Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Calculate the numerical value of the Hölder double sine function
ResourceFunction["HolderDoubleSine"][x,b] gives the Hölder double sine function sb(x). |
Evaluate numerically:
In[1]:= | ![]() |
Out[3]= | ![]() |
The double sine function is invariant under inversion of the variable b, sb(x)=sb-1(x):
In[4]:= | ![]() |
Out[6]= | ![]() |
The double sine function at the values ±x satisfies the relation sb(x)sb(-x)=1:
In[7]:= | ![]() |
Out[9]= | ![]() |
The double sine function at z and its conjugate satisfies the relation
:
In[10]:= | ![]() |
Out[12]= | ![]() |
The double sine function satisfies the following important difference equation :
In[13]:= | ![]() |
Out[15]= | ![]() |
Similarly, the double sine function satisfies the difference equation :
In[16]:= | ![]() |
Out[18]= | ![]() |
The variable b should be real and strictly positive:
In[19]:= | ![]() |
Out[20]= | ![]() |
A warning is generated if there is a potential numerical issue:
In[21]:= | ![]() |
Out[22]= | ![]() |
If b2 is an odd integer, then the function has a closed form expression[KNB]:
In[23]:= | ![]() |
In[24]:= | ![]() |
Out[29]= | ![]() |
In[30]:= | ![]() |
Out[35]= | ![]() |
In[36]:= | ![]() |
Out[41]= | ![]() |
has a closed form expression, see equation (A.19) in[H]:
In[42]:= | ![]() |
Out[44]= | ![]() |
Wolfram Language 13.0 (December 2021) or above
This work is licensed under a Creative Commons Attribution 4.0 International License