Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Calculate the numerical value of the Hölder double sine function
ResourceFunction["HolderDoubleSine"][x,b] gives the Hölder double sine function sb(x). |
Evaluate numerically:
| In[1]:= | ![]() |
| Out[3]= |
The double sine function is invariant under inversion of the variable b, sb(x)=sb-1(x):
| In[4]:= | ![]() |
| Out[6]= |
The double sine function at the values ±x satisfies the relation sb(x)sb(-x)=1:
| In[7]:= | ![]() |
| Out[9]= |
The double sine function at z and its conjugate
satisfies the relation
:
| In[10]:= | ![]() |
| Out[12]= |
The double sine function satisfies the following important difference equation
:
| In[13]:= | ![]() |
| Out[15]= |
Similarly, the double sine function satisfies the difference equation
:
| In[16]:= | ![]() |
| Out[18]= |
The variable b should be real and strictly positive:
| In[19]:= | ![]() |
| Out[20]= |
A warning is generated if there is a potential numerical issue:
| In[21]:= | ![]() |
| Out[22]= |
If b2 is an odd integer, then the function
has a closed form expression[KNB]:
| In[23]:= | ![]() |
| In[24]:= | ![]() |
| Out[29]= |
| In[30]:= | ![]() |
| Out[35]= |
| In[36]:= | ![]() |
| Out[41]= |
has a closed form expression, see equation (A.19) in[H]:
| In[42]:= | ![]() |
| Out[44]= |
Wolfram Language 13.0 (December 2021) or above
This work is licensed under a Creative Commons Attribution 4.0 International License