Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate Jordan's totient function
ResourceFunction["JordanTotient"][k,n] gives the Jordan totient function Jk(n). |
Evaluate J1(10):
In[1]:= | ![]() |
Out[1]= | ![]() |
Plot JordanTotient with log-scaled values:
In[2]:= | ![]() |
Out[2]= | ![]() |
Show a table of Jordan totients:
In[3]:= | ![]() |
Out[3]= | ![]() |
JordanTotient threads elementwise over lists:
In[4]:= | ![]() |
Out[4]= | ![]() |
Verify Gegenbauer's formula:
In[5]:= | ![]() |
Out[5]= | ![]() |
A formula for the logarithmic derivative of a cyclotomic polynomial evaluated at 1 due to Lehmer:
In[6]:= | ![]() |
Out[6]= | ![]() |
JordanTotient[1,n] is the same as EulerPhi[n]:
In[7]:= | ![]() |
Out[7]= | ![]() |
JordanTotient is a multiplicative function:
In[8]:= | ![]() |
Out[8]= | ![]() |
where p is prime:
In[9]:= | ![]() |
Out[9]= | ![]() |
JordanTotient[k,n] counts the number of k-tuples ≤n that form a coprime (k+1)-tuple together with n:
In[10]:= | ![]() |
Out[10]= | ![]() |
In[11]:= | ![]() |
Out[11]= | ![]() |
The power function can be expressed as a divisor sum of Jordan totients:
In[12]:= | ![]() |
Out[12]= | ![]() |
Plot the Ulam spiral with numbers colored based on the values of JordanTotient:
In[13]:= | ![]() |
In[14]:= | ![]() |
Out[14]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License