Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate Jordan's totient function
ResourceFunction["JordanTotient"][k,n] gives the Jordan totient function Jk(n). |
Evaluate J1(10):
| In[1]:= |
| Out[1]= |
Plot JordanTotient with log-scaled values:
| In[2]:= | ![]() |
| Out[2]= | ![]() |
Show a table of Jordan totients:
| In[3]:= |
| Out[3]= | ![]() |
JordanTotient threads elementwise over lists:
| In[4]:= |
| Out[4]= |
Verify Gegenbauer's formula:
| In[5]:= | ![]() |
| Out[5]= |
A formula for the logarithmic derivative of a cyclotomic polynomial evaluated at 1 due to Lehmer:
| In[6]:= | ![]() |
| Out[6]= |
JordanTotient[1,n] is the same as EulerPhi[n]:
| In[7]:= |
| Out[7]= |
JordanTotient is a multiplicative function:
| In[8]:= | ![]() |
| Out[8]= |
where p is prime:
| In[9]:= |
| Out[9]= |
JordanTotient[k,n] counts the number of k-tuples ≤n that form a coprime (k+1)-tuple together with n:
| In[10]:= |
| Out[10]= |
| In[11]:= |
| Out[11]= |
The power function can be expressed as a divisor sum of Jordan totients:
| In[12]:= |
| Out[12]= |
Plot the Ulam spiral with numbers colored based on the values of JordanTotient:
| In[13]:= |
| In[14]:= | ![]() |
| Out[14]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License