Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the Galois group for a polynomial
ResourceFunction["GaloisGroupProperties"][poly,var] returns the Galois group for a univariate polynomial poly in the variable var. | |
ResourceFunction["GaloisGroupProperties"][poly,var,prop] returns the specified property prop. |
Compute the Galois group of the polynomial x2+1:
In[1]:= |
![]() |
Out[1]= |
![]() |
Compute the Galois group of the polynomial x4+2:
In[2]:= |
![]() |
Out[2]= |
![]() |
Return the CayleyGraph for the Galois group:
In[3]:= |
![]() |
In[4]:= |
![]() |
Find the group order:
In[5]:= |
![]() |
Out[5]= |
![]() |
Get the generators:
In[6]:= |
![]() |
Out[6]= |
![]() |
Find the group elements:
In[7]:= |
![]() |
Out[7]= |
![]() |
Display the group multiplication table:
In[8]:= |
![]() |
Out[9]= |
![]() |
Get all of the available properties as an Association:
In[10]:= |
![]() |
Out[10]= |
![]() |
An irreducible polynomial of prime degree p larger than 4 with exactly 2 nonreal roots has Galois group SymmetricGroup[p]:
In[11]:= |
![]() |
Out[11]= |
![]() |
Verify that there are 3 real roots:
In[12]:= |
![]() |
Out[12]= |
![]() |
The Galois group for the irreducible polynomial of prime degree 5 with 2 nonreal roots is:
In[13]:= |
![]() |
Out[13]= |
![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License