Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

SystemofSystems

Guides

  • Guide to ZigangPan`SystemofSystems`

Symbols

  • EZDCFSS
  • interconnectionpropertyQ
  • robustMRACdesignSystemofSystems
  • systemofsystems
ZigangPan`SystemofSystems`
systemofsystems
​
systemofsystems
[ListofSystems]
returns the composite system in LTI system format or NLsystem format. The outputs of all systems in the ListofSystems are distinct, the states of all systems in the ListofSystems will be rendered distinct, some of the oupputs and inputs of all systems in the ListofSystems are the inputs into other systems, and thus form interconnections.
​
Examples  
(1)
Basic Examples  
(1)
In[1]:=
system1={{x11,x12,x13,x14,x15},{u11,u12,u21,y31,y32,wg1,wg2,wg3,wg4,wg5,wg6},{y11,y12,z11,z12},​​{{0,1,0,θb11,0,2θb11,θb12,0,θb11,-θb12,0,0,0,0,0,θb11},​​{0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0},​​{0,-θb13,0,0,0,0,0,0,0,0,0,0,0,0,0,0},​​{-1,0,0,-2,1,-θb11,-θb12,0,θb11,θb12,0,0,0,0,0,θb12},​​{0,0,0,-1/2,-1,0,0,1/6*θb12,θb11,-θb12,0,0,0,0,0,θb12},​​{1,0,0,0,0,θb11,θb12,0,0,0,1,0,0,0,0,0},​​{0,0,0,1,0,-θb12,θb11,0,0,0,0,1,0,0,0,0},​​{1,0,0,0,0,θb11,θb12,0,0,0,0,0,0,0,0,0},​​{0,0,0,1,0,-θb12,θb11,0,0,0,0,0,0,0,0,0}},{1,2},{1,2},{1,2},{3,4,5,6,7,8,9,10,11},{1,2},{3,4}}/.{θb111,θb121,θb132};systemcheck[system1]​​
Out[1]=
True
In[2]:=
system2={{x21,x22,x23,x24},{u21,u31,u32,y11,y12,wg1,wg2,wg3,wg4,wg5,wg6},{y21,z21},​​{{-θb21,1,0,0,θb21,0,0,0,0,0,0,0,0,0,θb21},​​{-θb21,0,1,0,3θb21,0,0,θb21,θb22,0,0,0,0,0,3θb21},{-θb22,0,0,1,3θb21,-θb22,θb21,-θb22,θb21,0,0,0,0,0,3θb21},{θb22,0,0,0,θb21,θb21,θb22,θb21,θb22,0,0,0,0,0,-θb21},{1,0,0,0,0,0,0,0,0,0,0,1,0,0,0},{1,0,0,0,0,0,0,0,0,0,0,0,0,0,0}},{1},{1},{1},{2,3,4,5,6,7,8,9,10,11},{1},{2}}/.{θb211,θb223/2};systemcheck[system2]
Out[2]=
True
In[3]:=
system3={{x31,x32,x33,x34,x35,x36},{u31,u32,u11,u12,y21,wg1,wg2,wg3,wg4,wg5,wg6},{y31,y32,z31,z32},​​{{1+θb31,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1+θb33},​​{1+θb31,-1+θb32,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1+θb34},​​{1-θb32,-1+θb31,0,0,1,0,1+θb33,1+θb34,0,0,1+θb31,0,0,0,0,0,1+θb31},​​{1+θb33,1+θb34,0,0,0,1,-1-θb34,1+θb33,0,0,-1-θb32,0,0,0,0,0,-1-θb32},​​{1-θb34,0,0,0,-1,1,0,0,1+θb33,0,1+θb34,0,0,0,0,0,1-θb34},​​{0,-1+θb33,0,0,-1,-1,0,0,0,1+θb34,0,0,0,0,0,0,-1+θb33},​​{1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0},​​{0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0},​​{1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},​​{0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}},{1,2},{1,2},{1,2},{3,4,5,6,7,8,9,10,11},{1,2},{3,4}}/.{θb311,θb321/2,θb333/2,θb341};systemcheck[system3]
Out[3]=
True
In[4]:=
cpsystem=
systemofsystems
[{system1,system2,system3}]
Out[4]=
{x11,x12,x13,x14,x15,x21,x22,x23,x24,x31,x32,x33,x34,x35,x36},{u11,u12,u21,u31,u32,wg1,wg2,wg3,wg4,wg5,wg6},{y11,y12,z11,z12,y21,z21,y31,y32,z31,z32},{0,1,0,1,0,0,0,0,0,1,-1,0,0,0,0,2,1,0,0,0,0,0,0,1,-1,1},{0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{-1,0,0,-2,1,0,0,0,0,1,1,0,0,0,0,-1,-1,0,0,0,0,0,0,1,1,1},0,0,0,-
1
2
,-1,0,0,0,0,1,-1,0,0,0,0,0,0,
1
6
,0,0,0,0,0,1,-1,1,{0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1},1,0,0,
3
2
,0,-1,0,1,0,0,0,0,0,0,0,-
1
2
,
5
2
,3,0,0,1,
3
2
,0,0,0,3,-
3
2
,0,0,1,0,-
3
2
,0,0,1,0,0,0,0,0,0,-
5
2
,-
1
2
,3,-
3
2
,1,-
3
2
,1,0,0,0,3,1,0,0,
3
2
,0,
3
2
,0,0,0,0,0,0,0,0,0,-
1
2
,
5
2
,1,1,
3
2
,1,
3
2
,0,0,0,-1,0,0,0,0,0,0,0,0,0,2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,
5
2
,0,0,0,0,0,0,0,0,0,2,-
1
2
,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,2,0,0,0,
1
2
,0,0,0,1,0,0,0,0,
5
2
,2,0,0,2,0,0,2,0,0,0,0,0,-
3
2
,0,0,0,
5
2
,2,0,0,0,1,0,0,0,-2,
5
2
,0,0,-
3
2
,0,0,-
3
2
,0,0,0,0,0,2,0,0,0,0,0,0,0,-1,1,
5
2
,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,
1
2
,0,0,-1,-1,0,2,0,0,0,0,0,0,0,0,
1
2
,{1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,0,0,0,0},{0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,1,0,0,0,0},{1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0},{0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0},{0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0},{0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0},{0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{1,2,3,4,5},{1,2,5,7,8},{1,2,3,4,5},{6,7,8,9,10,11},{1,2,5,7,8},{3,4,6,9,10}
In[5]:=
systemcheck[cpsystem]
Out[5]=
True
SeeAlso
interconnectionpropertyQ
 
▪
EZDCFSS
 
▪
robustMRACdesignSystemofSystems
 
▪
systemcheck
 
▪
NLsystemcheck
RelatedGuides
▪
Guide to ZigangPan`SystemofSystems`
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com