Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

SystemofSystems

Guides

  • Guide to ZigangPan`SystemofSystems`

Symbols

  • EZDCFSS
  • interconnectionpropertyQ
  • robustMRACdesignSystemofSystems
  • systemofsystems
ZigangPan`SystemofSystems`
EZDCFSS
​
{vectorrelativedegree,relativedegrees,highfrequencygain,transformation,extzerodynamics}=EZDCFSS[listofSystems,θ]
calculates the extended zero dynamics canonical form for parallel interconnected systems that satisfies the interconnection property.
listofSystems
: a list of LTI systems, each is robust adaptive control ready.
θ
: a list of the unknown parameter vector in the system.
vectorrelativedegree
: True if the composite system admits vector relative degree.
relativedegrees
: relative degrees for each channel of the output.
highfrequencygain
: the high frequency gain matrix for the composite system.
transformation
: the state transformation matrix that leads to the extended zero dynamics canonical form.
extzerodynamics
: the extended zero dynamics canonical form representation of the composite system.
​
Examples  
(1)
Basic Examples  
(1)
In[1]:=
Needs["ZigangPan`Examples`"]
In[2]:=
system1={{x11,x12,x13,x14,x15},{u11,u12,u21,y31,y32,wg1,wg2,wg3,wg4,wg5,wg6},{y11,y12,z11,z12},​​{{0,1,0,θb11,0,2θb11,θb12,0,θb11,-θb12,0,0,0,0,0,θb11},​​{0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0},​​{0,-θb13,0,0,0,0,0,0,0,0,0,0,0,0,0,0},​​{-1,0,0,-2,1,-θb11,-θb12,0,θb11,θb12,0,0,0,0,0,θb12},​​{0,0,0,-1/2,-1,0,0,1/6*θb12,θb11,-θb12,0,0,0,0,0,θb12},​​{1,0,0,0,0,θb11,θb12,0,0,0,1,0,0,0,0,0},​​{0,0,0,1,0,-θb12,θb11,0,0,0,0,1,0,0,0,0},​​{1,0,0,0,0,θb11,θb12,0,0,0,0,0,0,0,0,0},​​{0,0,0,1,0,-θb12,θb11,0,0,0,0,0,0,0,0,0}},{1,2},{1,2},{1,2},{3,4,5,6,7,8,9,10,11},{1,2},{3,4}};systemcheck[system1]​​
In[3]:=
θbar1={θb11,θb12,θb13};
In[4]:=
system2={{x21,x22,x23,x24},{u21,u31,u32,y11,y12,wg1,wg2,wg3,wg4,wg5,wg6},{y21,z21},​​{{-θb21,1,0,0,θb21,0,0,0,0,0,0,0,0,0,θb21},​​{-θb21,0,1,0,3θb21,0,0,θb21,θb22,0,0,0,0,0,3θb21},{-θb22,0,0,1,3θb21,-θb22,θb21,-θb22,θb21,0,0,0,0,0,3θb21},{θb22,0,0,0,θb21,θb21,θb22,θb21,θb22,0,0,0,0,0,-θb21},{1,0,0,0,0,0,0,0,0,0,0,1,0,0,0},{1,0,0,0,0,0,0,0,0,0,0,0,0,0,0}},{1},{1},{1},{2,3,4,5,6,7,8,9,10,11},{1},{2}};systemcheck[system2]
Out[4]=
True
In[5]:=
θbar2={θb21,θb22};
In[6]:=
system3={{x31,x32,x33,x34,x35,x36},{u31,u32,u11,u12,y21,wg1,wg2,wg3,wg4,wg5,wg6},{y31,y32,z31,z32},​​{{1+θb31,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1+θb33},​​{1+θb31,-1+θb32,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1+θb34},​​{1-θb32,-1+θb31,0,0,1,0,1+θb33,1+θb34,0,0,1+θb31,0,0,0,0,0,1+θb31},​​{1+θb33,1+θb34,0,0,0,1,-1-θb34,1+θb33,0,0,-1-θb32,0,0,0,0,0,-1-θb32},​​{1-θb34,0,0,0,-1,1,0,0,1+θb33,0,1+θb34,0,0,0,0,0,1-θb34},​​{0,-1+θb33,0,0,-1,-1,0,0,0,1+θb34,0,0,0,0,0,0,-1+θb33},​​{1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0},​​{0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0},​​{1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},​​{0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}},{1,2},{1,2},{1,2},{3,4,5,6,7,8,9,10,11},{1,2},{3,4}};systemcheck[system3]
Out[6]=
True
In[7]:=
θbar3={θb31,θb32,θb33,θb34}
Out[7]=
{θb31,θb32,θb33,θb34}
In[8]:=
$Assumptions=$Assumptions&&assumeReal[Join[system1〚1〛,system2〚1〛,system3〚1〛,system1〚2〛,system2〚2〛,system3〚2〛,system1〚3〛,system2〚3〛,system3〚3〛]]&&assumePositive[Join[θbar1,θbar2,θbar3]]
Out[8]=
x11∈&&x12∈&&x13∈&&x14∈&&x15∈&&x21∈&&x22∈&&x23∈&&x24∈&&x31∈&&x32∈&&x33∈&&x34∈&&x35∈&&x36∈&&u11∈&&u12∈&&u21∈&&y31∈&&y32∈&&wg1∈&&wg2∈&&wg3∈&&wg4∈&&wg5∈&&wg6∈&&u21∈&&u31∈&&u32∈&&y11∈&&y12∈&&wg1∈&&wg2∈&&wg3∈&&wg4∈&&wg5∈&&wg6∈&&u31∈&&u32∈&&u11∈&&u12∈&&y21∈&&wg1∈&&wg2∈&&wg3∈&&wg4∈&&wg5∈&&wg6∈&&y11∈&&y12∈&&z11∈&&z12∈&&y21∈&&z21∈&&y31∈&&y32∈&&z31∈&&z32∈&&θb11>0&&θb12>0&&θb13>0&&θb21>0&&θb22>0&&θb31>0&&θb32>0&&θb33>0&&θb34>0
In[9]:=
{vrd,rds,hfg,trans,ezdcf}=
EZDCFSS
[{system1,system2,system3},Join[θbar1,θbar2,θbar3]];
State transformation is xold = transformation.xnew
State transformation is xold = transformation.xnew
IdentityMatrix
:Dimension specification 0 should be a positive machine integer or a pair of positive machine integers.
State transformation is xold = transformation.xnew
State transformation is xold = transformation.xnew
State transformation is xold = transformation.xnew
State transformation is xold = transformation.xnew
State transformation is xold = transformation.xnew
In[10]:=
vrd
Out[10]=
True
In[11]:=
rds
Out[11]=
{0,0,1,2,2}
In[12]:=
hfg//MatrixForm
Out[12]//MatrixForm=
1
1
0
0
0
-1
1
0
0
0
0
0
θb21
0
0
0
0
0
1+θb33
1+θb34
0
0
0
-1-θb34
1+θb33
In[13]:=
systemoperation[FullSimplify[ezdcf],{"View"}];
SeeAlso
systemofsystems
 
▪
interconnectionpropertyQ
 
▪
robustMRACdesignSystemofSystems
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com