Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
RouthHurwitz
Guides
Guide to ZigangPan`RouthHurwitz`
Symbols
EmptyMatrixQ
FullColumnRankQ
FullRowRankQ
HurwitzMatrixQ
myMatrixQ
myNumericMatrixQ
myPositiveDefiniteMatrixQ
mySymmetricMatrixQ
NonDecreasingQ
NonNegativeDefiniteMatrixQ
NonSingularMatrixQ
RouthHurwitzTest
StrictIncreasingQ
ZigangPan`RouthHurwitz`
R
o
u
t
h
H
u
r
w
i
t
z
T
e
s
t
{
n
p
,
n
n
,
n
0
}
=
R
o
u
t
h
H
u
r
w
i
t
z
T
e
s
t
[
P
,
x
]
c
a
l
c
u
l
a
t
e
s
t
h
e
n
u
m
b
e
r
o
f
r
o
o
t
s
o
f
t
h
e
p
o
l
y
n
o
m
i
a
l
P
(
w
i
t
h
p
o
s
s
i
b
l
y
c
o
m
p
l
e
x
c
o
e
f
f
i
c
i
e
n
t
s
a
n
d
i
n
d
e
p
e
n
d
e
n
t
v
a
r
i
a
b
l
e
x
,
P
i
s
a
f
o
r
m
u
l
a
r
a
t
h
e
r
t
h
a
n
a
f
u
n
c
t
i
o
n
)
t
h
a
t
l
i
e
s
i
n
t
h
e
o
p
e
n
r
i
g
h
t
h
a
l
f
o
f
t
h
e
c
o
m
p
l
e
x
p
l
a
n
e
,
t
h
e
o
p
e
n
l
e
f
t
h
a
l
f
o
f
t
h
e
c
o
m
p
l
e
x
p
l
a
n
e
,
a
n
d
o
n
t
h
e
i
m
a
g
i
n
a
r
y
a
x
i
s
o
f
t
h
e
c
o
m
p
l
e
x
p
l
a
n
e
,
w
h
i
c
h
a
r
e
d
e
n
o
t
e
d
b
y
n
p
,
n
n
,
a
n
d
n
0
,
r
e
s
p
e
c
t
i
v
e
l
y
.
C
l
e
a
r
l
y
,
n
p
+
n
n
+
n
0
=
n
,
w
h
e
r
e
n
i
s
t
h
e
d
e
g
r
e
e
o
f
P
.
Examples
(
1
)
Basic Examples
(
1
)
I
n
[
1
]
:
=
p
=
x
1
^
4
+
x
1
^
3
+
x
1
+
1
;
I
n
[
2
]
:
=
{
n
p
,
n
n
,
n
0
}
=
R
o
u
t
h
H
u
r
w
i
t
z
T
e
s
t
[
p
,
x
1
]
O
u
t
[
2
]
=
{
2
,
2
,
0
}
I
n
[
3
]
:
=
p
=
(
1
+
I
)
x
1
^
6
+
(
2
-
I
)
x
1
^
5
+
(
1
-
I
)
x
1
^
4
+
(
1
+
I
)
x
1
^
3
+
(
2
+
2
I
)
x
1
^
2
+
(
2
+
3
I
)
x
1
+
1
O
u
t
[
3
]
=
1
+
(
2
+
3
)
x
1
+
(
2
+
2
)
2
x
1
+
(
1
+
)
3
x
1
+
(
1
-
)
4
x
1
+
(
2
-
)
5
x
1
+
(
1
+
)
6
x
1
I
n
[
4
]
:
=
{
n
p
,
n
n
,
n
0
}
=
R
o
u
t
h
H
u
r
w
i
t
z
T
e
s
t
[
p
,
x
1
]
O
u
t
[
4
]
=
{
2
,
4
,
0
}
I
n
[
5
]
:
=
p
=
x
1
^
6
+
x
1
^
4
+
x
1
^
2
+
1
O
u
t
[
5
]
=
1
+
2
x
1
+
4
x
1
+
6
x
1
I
n
[
6
]
:
=
{
n
p
,
n
n
,
n
0
}
=
R
o
u
t
h
H
u
r
w
i
t
z
T
e
s
t
[
p
,
x
1
]
O
u
t
[
6
]
=
{
2
,
2
,
2
}
S
e
e
A
l
s
o
H
u
r
w
i
t
z
M
a
t
r
i
x
Q
▪
m
y
M
a
t
r
i
x
Q
▪
E
m
p
t
y
M
a
t
r
i
x
Q
▪
N
o
n
N
e
g
a
t
i
v
e
D
e
f
i
n
i
t
e
M
a
t
r
i
x
Q
▪
m
y
P
o
s
i
t
i
v
e
D
e
f
i
n
i
t
e
M
a
t
r
i
x
Q
▪
F
u
l
l
C
o
l
u
m
n
R
a
n
k
Q
▪
F
u
l
l
R
o
w
R
a
n
k
Q
▪
N
o
n
S
i
n
g
u
l
a
r
M
a
t
r
i
x
Q
R
e
l
a
t
e
d
G
u
i
d
e
s
▪
G
u
i
d
e
t
o
Z
i
g
a
n
g
P
a
n
`
R
o
u
t
h
H
u
r
w
i
t
z
`
"
"