Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
RouthHurwitz
Guides
Guide to ZigangPan`RouthHurwitz`
Symbols
EmptyMatrixQ
FullColumnRankQ
FullRowRankQ
HurwitzMatrixQ
myMatrixQ
myNumericMatrixQ
myPositiveDefiniteMatrixQ
mySymmetricMatrixQ
NonDecreasingQ
NonNegativeDefiniteMatrixQ
NonSingularMatrixQ
RouthHurwitzTest
StrictIncreasingQ
ZigangPan`RouthHurwitz`
N
o
n
D
e
c
r
e
a
s
i
n
g
Q
N
o
n
D
e
c
r
e
a
s
i
n
g
[
x
]
t
a
k
e
s
a
n
a
r
g
u
m
e
n
t
x
,
w
h
i
c
h
m
u
s
t
b
e
a
v
e
c
t
o
r
.
I
t
r
e
t
u
r
n
s
T
r
u
e
i
f
t
h
e
e
l
e
m
e
n
t
s
o
f
x
a
r
e
n
o
n
d
e
c
r
e
a
s
i
n
g
,
a
n
d
o
t
h
e
r
w
i
s
e
F
a
l
s
e
.
Examples
(
1
)
Basic Examples
(
1
)
I
n
[
1
]
:
=
x
=
{
0
,
1
,
1
,
2
}
;
y
=
{
0
,
1
,
0
,
2
}
;
z
=
{
0
,
1
,
2
,
3
}
;
I
n
[
2
]
:
=
N
o
n
D
e
c
r
e
a
s
i
n
g
Q
[
x
]
O
u
t
[
2
]
=
T
r
u
e
I
n
[
3
]
:
=
N
o
n
D
e
c
r
e
a
s
i
n
g
Q
[
y
]
O
u
t
[
3
]
=
F
a
l
s
e
I
n
[
4
]
:
=
N
o
n
D
e
c
r
e
a
s
i
n
g
Q
[
z
]
O
u
t
[
4
]
=
T
r
u
e
I
n
[
5
]
:
=
S
t
r
i
c
t
I
n
c
r
e
a
s
i
n
g
Q
[
x
]
O
u
t
[
5
]
=
F
a
l
s
e
I
n
[
6
]
:
=
S
t
r
i
c
t
I
n
c
r
e
a
s
i
n
g
Q
[
z
]
O
u
t
[
6
]
=
T
r
u
e
S
e
e
A
l
s
o
T
r
u
e
▪
F
a
l
s
e
▪
S
t
r
i
c
t
I
n
c
r
e
a
s
i
n
g
Q
▪
P
o
s
i
t
i
v
e
▪
N
o
n
N
e
g
a
t
i
v
e
"
"