Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
NonlinearCholeskyFactorizationMIMO
Guides
Guide to ZigangPan`NonlinearCholeskyFactorizationMIMO`
Symbols
backsteppinglocaloptimalmatchingglobalinverseoptimalMIMO
linearFactorSequential
ZigangPan`NonlinearCholeskyFactorizationMIMO`
l
i
n
e
a
r
F
a
c
t
o
r
S
e
q
u
e
n
t
i
a
l
{
f
0
,
f
t
i
l
d
e
}
=
l
i
n
e
a
r
F
a
c
t
o
r
S
e
q
u
e
n
t
i
a
l
[
f
,
x
c
,
y
c
]
r
e
t
u
r
n
s
a
f
o
r
m
u
l
a
f
0
a
n
d
a
f
o
r
m
u
l
a
f
t
i
l
d
e
o
f
a
t
e
n
s
o
r
f
u
n
c
t
i
o
n
f
t
i
l
d
e
[
x
c
,
y
c
]
s
u
c
h
t
h
a
t
f
=
f
0
+
f
t
i
l
d
e
.
y
c
a
n
d
f
t
i
l
d
e
〚
A
l
l
,
.
.
.
,
A
l
l
,
1
;
;
i
〛
i
s
a
f
u
n
c
t
i
o
n
o
f
(
x
c
,
y
c
[
[
1
;
;
i
]
]
)
o
n
l
y
,
i
=
1
,
.
.
.
,
L
e
n
g
t
h
[
y
c
]
.
I
t
a
s
s
u
m
e
s
t
h
a
t
f
h
a
s
a
d
o
m
a
i
n
o
f
d
e
f
i
n
i
t
i
o
n
t
h
a
t
i
s
i
n
c
l
u
d
e
s
i
n
(
x
c
,
y
c
i
)
,
w
h
e
r
e
y
c
i
=
y
c
e
x
c
e
p
t
t
h
e
l
a
s
t
i
i
n
d
i
c
e
s
a
r
e
z
e
r
o
s
.
f
:
a
f
o
r
m
u
l
a
f
o
r
s
c
a
l
a
r
,
v
e
c
t
o
r
,
m
a
t
r
i
x
o
r
t
e
n
s
o
r
v
a
l
u
e
d
f
u
n
c
t
i
o
n
w
i
t
h
i
n
d
e
p
e
n
d
e
n
t
v
a
r
i
a
b
l
e
s
J
o
i
n
[
x
c
,
y
c
]
;
x
c
:
a
v
e
c
t
o
r
o
f
v
a
r
i
a
b
l
e
s
(
m
a
y
b
e
e
m
p
t
y
)
y
c
:
a
v
e
c
t
o
r
o
f
v
a
r
i
a
b
l
e
s
(
m
u
s
t
b
e
n
o
n
e
m
p
t
y
)
Examples
(
1
)
Basic Examples
(
1
)
I
n
[
1
]
:
=
f
=
{
x
1
+
x
2
+
x
1
*
y
2
+
y
1
^
2
*
x
2
,
x
1
-
x
2
+
y
1
^
2
+
x
1
*
x
2
*
(
y
2
+
y
2
^
2
)
}
;
x
c
=
{
x
1
,
x
2
}
;
y
c
=
{
y
1
,
y
2
}
;
l
i
n
e
a
r
F
a
c
t
o
r
S
e
q
u
e
n
t
i
a
l
[
f
,
x
c
,
y
c
]
O
u
t
[
1
]
=
{
{
x
1
+
x
2
,
x
1
-
x
2
}
,
{
{
x
2
y
1
,
x
1
}
,
{
y
1
,
x
1
x
2
(
1
+
y
2
)
}
}
}
I
n
[
2
]
:
=
f
=
{
x
1
+
x
2
+
x
1
*
y
2
+
y
1
^
2
*
x
2
,
x
1
-
x
2
+
y
1
y
2
+
x
1
*
x
2
*
(
y
2
+
y
2
^
2
)
}
;
x
c
=
{
x
1
,
x
2
}
;
y
c
=
{
y
1
,
y
2
}
;
l
i
n
e
a
r
F
a
c
t
o
r
C
o
n
v
e
x
[
f
,
x
c
,
y
c
]
O
u
t
[
2
]
=
{
x
1
+
x
2
,
x
1
-
x
2
}
,
{
x
2
y
1
,
x
1
}
,
y
2
2
,
x
1
x
2
+
y
1
2
+
x
1
x
2
y
2
I
n
[
3
]
:
=
f
=
{
x
1
+
x
2
+
x
1
*
y
2
+
y
1
^
2
*
x
2
,
x
1
-
x
2
+
y
1
y
2
+
x
1
*
x
2
*
(
y
2
+
y
2
^
2
)
}
;
x
c
=
{
x
1
,
x
2
}
;
y
c
=
{
y
1
,
y
2
}
;
l
i
n
e
a
r
F
a
c
t
o
r
S
e
q
u
e
n
t
i
a
l
[
f
,
x
c
,
y
c
]
O
u
t
[
3
]
=
{
{
x
1
+
x
2
,
x
1
-
x
2
}
,
{
{
x
2
y
1
,
x
1
}
,
{
0
,
y
1
+
x
1
x
2
(
1
+
y
2
)
}
}
}
S
e
e
A
l
s
o
l
i
n
e
a
r
F
a
c
t
o
r
C
o
n
v
e
x
R
e
l
a
t
e
d
G
u
i
d
e
s
▪
G
u
i
d
e
t
o
Z
i
g
a
n
g
P
a
n
`
N
o
n
l
i
n
e
a
r
C
h
o
l
e
s
k
y
F
a
c
t
o
r
i
z
a
t
i
o
n
M
I
M
O
`
"
"