Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
CalculateInverse
Guides
Guide to ZigangPan`CalculateInverse`
Symbols
FormulaToCPFunction
FormulaToFunction
inversefunction
updatenames
ZigangPan`CalculateInverse`
i
n
v
e
r
s
e
f
u
n
c
t
i
o
n
i
n
v
e
r
s
e
f
u
n
c
t
i
o
n
[
f
,
x
c
,
x
t
]
{
g
,
y
t
}
=
i
n
v
e
r
s
e
f
u
n
c
t
i
o
n
[
f
,
x
c
,
x
t
]
,
w
h
e
r
e
f
i
s
a
n
(
n
>
0
)
d
i
m
e
n
s
i
o
n
a
l
p
u
r
e
f
u
n
c
t
i
o
n
w
i
t
h
n
+
m
n
u
m
b
e
r
o
f
i
n
d
e
p
e
n
d
e
n
t
v
a
r
i
a
b
l
e
s
w
h
i
c
h
a
r
e
l
i
s
t
e
d
i
n
x
t
,
a
n
d
x
c
i
s
a
s
u
b
l
i
s
t
o
f
n
v
a
r
i
a
b
l
e
s
o
f
x
t
t
h
a
t
w
e
w
o
u
l
d
l
i
k
e
t
o
i
n
v
e
r
s
e
f
w
i
t
h
r
e
s
p
e
c
t
t
o
.
W
e
a
s
s
u
m
e
t
h
a
t
t
h
e
i
n
v
e
r
s
e
f
u
n
c
t
i
o
n
e
x
i
s
t
s
.
y
=
f
[
x
t
]
.
T
h
e
r
e
t
u
r
n
o
f
t
h
e
f
u
n
c
t
i
o
n
i
s
{
g
,
y
t
}
,
w
h
e
r
e
g
i
s
a
p
u
r
e
f
u
n
c
t
i
o
n
w
i
t
h
n
+
m
v
a
r
i
a
b
l
e
s
,
w
h
e
r
e
t
h
e
f
i
r
s
t
n
v
a
r
i
a
b
l
e
s
a
r
e
y
a
n
d
t
h
e
r
e
s
t
o
f
m
v
a
r
i
a
b
l
e
s
a
r
e
t
h
o
s
e
i
n
x
t
b
u
t
n
o
t
i
n
x
c
l
i
s
t
e
d
i
n
o
r
d
e
r
o
f
x
t
,
a
n
d
y
t
i
s
t
h
e
l
i
s
t
o
f
i
n
d
e
p
e
n
d
e
n
t
v
a
r
i
a
b
l
e
s
i
n
g
.
Examples
(
1
)
Basic Examples
(
1
)
I
n
[
1
]
:
=
f
x
=
{
x
1
+
x
2
+
x
4
,
x
2
+
x
3
+
x
4
,
x
3
+
x
4
^
2
-
x
2
}
;
x
c
=
{
x
1
,
x
2
,
x
3
}
;
x
t
=
{
x
1
,
x
2
,
x
3
,
x
4
}
;
I
n
[
2
]
:
=
f
=
F
o
r
m
u
l
a
T
o
F
u
n
c
t
i
o
n
[
x
t
,
f
x
]
O
u
t
[
2
]
=
F
u
n
c
t
i
o
n
[
{
x
1
,
x
2
,
x
3
,
x
4
}
,
{
x
1
+
x
2
+
x
4
,
x
2
+
x
3
+
x
4
,
-
x
2
+
x
3
+
2
x
4
}
]
I
n
[
3
]
:
=
{
g
,
y
t
}
=
i
n
v
e
r
s
e
f
u
n
c
t
i
o
n
[
f
,
x
c
,
x
t
]
O
u
t
[
3
]
=
F
u
n
c
t
i
o
n
{
y
1
,
y
2
,
y
3
,
x
4
}
,
1
2
(
-
x
4
-
2
x
4
+
2
y
1
-
y
2
+
y
3
)
,
1
2
(
-
x
4
+
2
x
4
+
y
2
-
y
3
)
,
1
2
(
-
x
4
-
2
x
4
+
y
2
+
y
3
)
,
{
y
1
,
y
2
,
y
3
,
x
4
}
I
n
[
4
]
:
=
S
i
m
p
l
i
f
y
[
A
p
p
l
y
[
g
,
J
o
i
n
[
A
p
p
l
y
[
f
,
x
t
]
,
y
t
〚
4
;
;
4
〛
]
]
]
O
u
t
[
4
]
=
{
x
1
,
x
2
,
x
3
}
S
e
e
A
l
s
o
I
n
v
e
r
s
e
F
u
n
c
t
i
o
n
▪
I
n
v
e
r
s
e
F
u
n
c
t
i
o
n
s
"
"