Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
CalculateInverse
Guides
Guide to ZigangPan`CalculateInverse`
Symbols
FormulaToCPFunction
FormulaToFunction
inversefunction
updatenames
ZigangPan`CalculateInverse`
F
o
r
m
u
l
a
T
o
F
u
n
c
t
i
o
n
F
o
r
m
u
l
a
T
o
F
u
n
c
t
i
o
n
[
x
,
f
x
]
r
e
t
u
r
n
s
a
p
u
r
e
f
u
n
c
t
i
o
n
f
,
w
i
t
h
i
n
d
e
p
e
n
d
e
n
t
v
a
r
i
a
b
l
e
s
l
i
s
t
e
d
i
n
x
,
s
u
c
h
t
h
a
t
f
[
x
]
=
f
x
.
Examples
(
1
)
Basic Examples
(
1
)
I
n
[
1
]
:
=
f
x
=
{
x
1
+
x
2
,
x
2
-
x
1
^
2
}
;
x
c
=
{
x
1
,
x
2
}
;
I
n
[
2
]
:
=
f
=
F
o
r
m
u
l
a
T
o
F
u
n
c
t
i
o
n
[
x
c
,
f
x
]
O
u
t
[
2
]
=
F
u
n
c
t
i
o
n
[
{
x
1
,
x
2
}
,
{
x
1
+
x
2
,
-
2
x
1
+
x
2
}
]
▪
The above is what we want, as compared to the following, which is not what we want.
I
n
[
3
]
:
=
g
=
F
u
n
c
t
i
o
n
[
x
c
,
f
x
]
O
u
t
[
3
]
=
F
u
n
c
t
i
o
n
[
x
c
,
f
x
]
S
e
e
A
l
s
o
F
u
n
c
t
i
o
n
R
e
l
a
t
e
d
G
u
i
d
e
s
▪
G
u
i
d
e
t
o
Z
i
g
a
n
g
P
a
n
`
C
a
l
c
u
l
a
t
e
I
n
v
e
r
s
e
`
"
"