Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
NetworkSystem
Symbols
CyclicNet
NetworkSystemDisplay
NetworkSystemEvolutionList
NetworkSystemEvolutionPlot
NetworkSystemRule
WolframInstitute`NetworkSystem`
N
e
t
w
o
r
k
S
y
s
t
e
m
D
i
s
p
l
a
y
N
e
t
w
o
r
k
S
y
s
t
e
m
D
i
s
p
l
a
y
[
n
e
t
w
o
r
k
]
g
i
v
e
s
a
g
r
a
p
h
i
c
d
i
s
p
l
a
y
o
f
n
e
t
w
o
r
k
.
V
a
l
u
e
o
f
n
e
t
w
o
r
k
i
s
o
f
t
h
e
f
o
r
m
{
{
i
1
,
j
1
}
,
{
j
2
,
i
2
}
,
.
.
.
,
}
e
.
t
.
c
w
h
e
r
e
i
m
,
j
n
a
r
e
n
o
d
e
s
.
Examples
(
1
)
Basic Examples
(
1
)
Custom net:
I
n
[
1
]
:
=
N
e
t
w
o
r
k
S
y
s
t
e
m
D
i
s
p
l
a
y
[
{
{
2
,
7
}
,
{
6
,
1
}
,
{
3
,
4
}
,
{
4
,
2
}
,
{
6
,
3
}
,
{
7
,
4
}
}
]
O
u
t
[
1
]
=
I
n
[
2
]
:
=
N
e
t
w
o
r
k
S
y
s
t
e
m
D
i
s
p
l
a
y
[
{
{
3
,
7
}
,
{
6
,
1
}
,
{
7
,
4
}
,
{
4
,
2
}
,
{
6
,
3
}
,
{
6
,
4
}
}
]
O
u
t
[
2
]
=
Cyclic network. From NKS
p
a
g
e
1
9
8
:
I
n
[
3
]
:
=
c
n
e
t
=
C
y
c
l
i
c
N
e
t
[
1
6
]
O
u
t
[
3
]
=
{
{
1
6
,
2
}
,
{
1
,
3
}
,
{
2
,
4
}
,
{
3
,
5
}
,
{
4
,
6
}
,
{
5
,
7
}
,
{
6
,
8
}
,
{
7
,
9
}
,
{
8
,
1
0
}
,
{
9
,
1
1
}
,
{
1
0
,
1
2
}
,
{
1
1
,
1
3
}
,
{
1
2
,
1
4
}
,
{
1
3
,
1
5
}
,
{
1
4
,
1
6
}
,
{
1
5
,
1
}
}
I
n
[
4
]
:
=
N
e
t
w
o
r
k
S
y
s
t
e
m
D
i
s
p
l
a
y
[
c
n
e
t
]
O
u
t
[
4
]
=
Grid network. From NKS
p
a
g
e
1
9
8
:
I
n
[
5
]
:
=
g
r
i
d
N
e
t
[
i
_
,
t
o
t
_
]
:
=
{
S
w
i
t
c
h
[
M
o
d
[
i
,
4
]
,
1
,
M
o
d
[
i
-
4
+
2
,
t
o
t
]
,
2
,
M
o
d
[
i
-
8
+
2
,
t
o
t
]
/
.
0
t
o
t
,
3
,
M
o
d
[
i
+
4
-
2
,
t
o
t
]
,
0
,
M
o
d
[
i
+
8
-
2
,
t
o
t
]
]
,
i
+
I
f
[
M
o
d
[
i
,
4
]
0
,
-
2
,
1
]
}
I
n
[
6
]
:
=
g
r
i
d
n
e
t
=
T
a
b
l
e
[
g
r
i
d
N
e
t
[
i
,
1
6
]
,
{
i
,
1
6
}
]
O
u
t
[
6
]
=
{
{
1
5
,
2
}
,
{
1
2
,
3
}
,
{
5
,
4
}
,
{
1
0
,
2
}
,
{
3
,
6
}
,
{
1
6
,
7
}
,
{
9
,
8
}
,
{
1
4
,
6
}
,
{
7
,
1
0
}
,
{
4
,
1
1
}
,
{
1
3
,
1
2
}
,
{
2
,
1
0
}
,
{
1
1
,
1
4
}
,
{
8
,
1
5
}
,
{
1
,
1
6
}
,
{
6
,
1
4
}
}
I
n
[
7
]
:
=
N
e
t
w
o
r
k
S
y
s
t
e
m
D
i
s
p
l
a
y
[
g
r
i
d
n
e
t
]
O
u
t
[
7
]
=
Tree network. From NKS
p
a
g
e
1
9
8
:
I
n
[
8
]
:
=
t
r
e
e
N
e
t
[
t
o
t
_
?
O
d
d
Q
]
:
=
M
a
p
I
n
d
e
x
e
d
[
#
&
,
J
o
i
n
[
P
a
r
t
i
t
i
o
n
[
R
a
n
g
e
[
2
,
t
o
t
]
,
2
]
,
T
a
b
l
e
[
{
n
,
n
}
,
{
n
,
(
t
o
t
+
1
)
/
2
,
t
o
t
}
]
]
]
I
n
[
9
]
:
=
t
n
e
t
=
t
r
e
e
N
e
t
[
1
7
]
O
u
t
[
9
]
=
{
{
2
,
3
}
,
{
4
,
5
}
,
{
6
,
7
}
,
{
8
,
9
}
,
{
1
0
,
1
1
}
,
{
1
2
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
,
{
9
,
9
}
,
{
1
0
,
1
0
}
,
{
1
1
,
1
1
}
,
{
1
2
,
1
2
}
,
{
1
3
,
1
3
}
,
{
1
4
,
1
4
}
,
{
1
5
,
1
5
}
,
{
1
6
,
1
6
}
,
{
1
7
,
1
7
}
}
I
n
[
1
0
]
:
=
N
e
t
w
o
r
k
S
y
s
t
e
m
D
i
s
p
l
a
y
[
t
n
e
t
]
O
u
t
[
1
0
]
=
S
e
e
A
l
s
o
N
e
t
w
o
r
k
S
y
s
t
e
m
R
u
l
e
▪
C
y
c
l
i
c
N
e
t
R
e
l
a
t
e
d
L
i
n
k
s
h
t
t
p
s
:
/
/
c
o
m
m
u
n
i
t
y
.
w
o
l
f
r
a
m
.
c
o
m
/
g
r
o
u
p
s
/
-
/
m
/
t
/
3
4
2
0
7
7
5
h
t
t
p
s
:
/
/
w
w
w
.
w
o
l
f
r
a
m
s
c
i
e
n
c
e
.
c
o
m
/
n
k
s
/
p
1
9
3
-
-
n
e
t
w
o
r
k
-
s
y
s
t
e
m
s
/
h
t
t
p
s
:
/
/
w
w
w
.
w
o
l
f
r
a
m
s
c
i
e
n
c
e
.
c
o
m
/
n
k
s
/
n
o
t
e
s
-
5
-
5
-
-
i
m
p
l
e
m
e
n
t
a
t
i
o
n
-
o
f
-
n
e
t
w
o
r
k
-
s
y
s
t
e
m
s
/
"
"