Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

SpecialFunctionsAndCalculus

Tech Notes

  • Mellin-Barnes-Based Calculus

Symbols

  • MeijerGForm
Mellin-Barnes-Based Calculus
Introduction
The Meijer-G and Fox-H functions
Introduction
The functionality contained in this paclet represents an implementation of techniques that we will refer to collectively as Mellin-Barnes-based calculus. By representing elementary and special functions uniformly as special cases of the functions
MeijerG
and
FoxH
, this technique allows a systematization of certain aspects of integration. When applied to functions of the
hypergeometric
type, the methods here outlined allow for the calculation of derivatives, definite and indefinite integrals, and a large class of integral transforms . In this tech note, general principles of this powerful technique are described, while many technical details have been omitted.
The Meijer-G and Fox-H functions
Our first task will be to define the special functions
MeijerG
and
FoxH
. These functions are defined in terms of so-called
Mellin-Barnes integrals
as follows:
MeijerG[{{
a
1
,…,
a
n
},{
a
n+1
,…,
a
p
}},{{
b
1
,…,
b
m
},{
b
m+1
,…,
b
q
}},z,r]=
m,n
G
p,q
z,r
a
1
,…,
a
n
,
a
n+1
,…,
a
p
b
1
,…,
b
m
,
b
m+1
,…,
b
q
=
r
2π
∫
ℒ

m
∏
k=1
Γ(
b
k
+rs)
n
∏
k=1
Γ(1-
a
k
-rs)
p
∏
k=n+1
Γ(
a
k
-rs)
q
∏
k=m+1
Γ(1-
b
k
-rs)
-s
z
s
and
FoxH[{{{
a
1
,
α
1
},…,{
a
n
,
α
n
}},{{
a
n+1
,
α
n+1
},…,{
a
p
,
α
p
}}},{{{
b
1
,
β
1
},…,{
b
m
,
β
m
}},{{
b
m+1
,
β
m+1
},…,{
b
q
,
β
q
}}},z]
=
m,n
H
p,q
z
(
a
1
,
α
1
),…,(
a
n
,
α
n
)
,
(
a
n+1
,
α
n+1
),…,(
a
p
,
α
p
)
(
b
1
,
β
1
),…,(
b
m
,
β
m
)
,
(
b
m+1
,
β
m+1
),…,(
b
q
,
β
q
)

1
2π
∫
ℒ
m
∏
j=1
Γ
b
j
+
β
j
s
n
∏
i=1
Γ(1-
a
i
-
α
i
s)
p
∏
i=n+1
Γ(
a
i
+s
α
i
)
q
∏
j=m+1
Γ1-
b
j
-
β
j
s
-s
z
s
​
where
m
,
n
,
p
, and
q
are integers with 0 ≤
m
≤
q
and 0 ≤
n
≤
p
, the
a
i
,
α
i
,
b
i
,
β
i
, and
r
are real parameters with
α
i
> 0 and
β
i
> 0, and
z
≠0. When
r
is omitted, it is assumed to be 1. The parameters must be taken to be such that none of the poles of the
Γ(1-
a
i
-
α
i
s)
coincide with those of
Γ(
b
j
+
β
j
s)
. Note that
m,n
H
p,q
reduces to
m,n
G
p,q
when the
α
i
and
β
i
are all equal. The contour, ℒ, in this definition is a deformation of the imaginary axis that separates the poles of the
Γ(1-
a
i
-
α
i
s)
from those of the
Γ(
b
j
+
β
j
s)
. It can be shown using the asymptotic expansion of
Γ(z)
at infinity, though it is beyond our scope to do so here, that a such a contour can always be chosen such that the defining integral converges.
In[16]:=
SampleUnivariateFunctions
["FunctionType""MediumTestSet"]
Out[16]=
-1+
6
Cos[z.]
In[17]:=
MeijerGForm
[%,z.]
Out[17]=
-
15
32
π
MeijerG{{1},{}},{1},0,
1
2
,z.,
1
2
-
3
16
π
MeijerG{{1},{}},{1},0,
1
2
,2z.,
1
2
-
1
32
π
MeijerG{{1},{}},{1},0,
1
2
,3z.,
1
2

In[30]:=
SampleUnivariateFunctions
["FunctionType""MediumTestSet"]
Out[30]=
-BesselYν.,4
1/4
z.
+StruveHν.,4
1/4
z.

In[31]:=
MeijerGForm
[%,z.]
Out[31]=
Cos[ν.π]MeijerG
1+ν.
2
,{},
1+ν.
2
,-
ν.
2
,
ν.
2
,{},2
1/4
z.
,
1
2

2
π
It is worthwhile to observe at this point that
m,n
G
p,q
and
m,n
H
p,q
take the form of an inverse Mellin transform of a ratio of product of's. The Mellin transform of a function f(t) is defined via
First, we introduce the Mellin transform ℳ[f[t]; s]:
ℳ[f[t];t,s]
∞
∫
0
f[t]
s-1
t
t
and its inverse:
-1
ℳ
[ℳ(f(t);t,s);s,t]f(t)
γ+∞
∫
γ-∞
-s
t
ℳ[f(t);t,s]s
2π
where the integration is over a vertical line Re[s]γ lying within the strip of convergence. This integral transform is named after the Finnish mathematician H. Mellin, who introduced it in 1897.
​
Much of the utility of
MeijerG
and
FoxH
stems from the fact that a huge group of algebraic and special functions can be written as special cases of these functions when appropriate choices of the parameters are taken. The paclet uses the functions MeijerGForm and FoxHForm to compute such representations:
In[14]:=
MeijerGForm
[Exp[-ax^2],x]
Out[14]=
MeijerG[{{},{}},{{0},{}},a
2
x
]
In[17]:=
FoxHForm[BesselJ[1,x],x]
Out[17]=
1
2
FoxH{{},{}},
1
2
,
1
2
,-
1
2
,
1
2
,
x
2

This is coupled with the fact that certain quite general integrals involving Meijer-G and Fox-H are themselves writable as combinations of gamma functions, whose parameters are related to the parameters of the original function. So, for example, one can show that
∞
∫
0
α
z
0,1
G
1,0
(z|
a
)=Γ[-a-α]whenRe[α]<-Re[a],
and otherwise the integral diverges. The integration can be done using paclet function MarichevIntegrate as follows:
In[12]:=
MarichevIntegrate[
α
z
MeijerG[{{a},{}},{{},{}},z],{z,0,Infinity}]//Activate//FullSimplify
Out[12]=
Gamma[-a-α] if {Re[a+α]<0}
In integrating convolutions of MeijerG and FoxH expressions, we are aided by a useful property of Mellin transforms
RelatedTechNotes
▪
Meijer G and Fox H Representation-Based Calculus
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com