Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

SpecialFunctionsAndCalculus

Tech Notes

  • Meijer-G/Fox-H Representation-Based Calculus

Symbols

  • MeijerGForm
WolframAlphaMath`SpecialFunctionsAndCalculus`
MeijerGForm
​
Convert a mathematical expression to a
MeijerG
expression if possible
​
Details and Options

Examples  
(13)
Basic Examples  
(2)
Get the Meijer-G form of a trigonometric function:
In[1]:=
MeijerGForm
[Sin[z],z]
Out[1]=
π
MeijerG{{},{}},
1
2
,{0},
z
2
,
1
2

Activating the result allows the
MeijerG
to evaluate, giving back the original function:
In[2]:=
Activate[%]
Out[2]=
Sin[z]
​
Represent
BesselJ
in terms of
MeijerG
:
In[1]:=
MeijerGForm
[BesselJ[1,ax],x]
Out[1]=
MeijerG{{},{}},
1
2
,-
1
2
,
ax
2
,
1
2

Recover the original function using
Activate
:
In[2]:=
Activate[%]
Out[2]=
BesselJ[1,ax]
Scope  
(9)

Elementary Functions

Rational functions:
In[1]:=
MeijerGForm

1
2
x
+1
,x
Out[1]=
MeijerG[{{0},{}},{{0},{}},
2
x
]
In[2]:=
MeijerGForm

1
2x+3
,x
Out[2]=
1
3
MeijerG{{0},{}},{{0},{}},
2x
3

​
Algebraic functions:
In[1]:=
MeijerGForm

1
x
+1
,x
Out[1]=
MeijerG{{0},{}},{{0},{}},
x

​
Trigonometric functions:
In[1]:=
MeijerGForm
[Sin[ax],x]
Out[1]=
π
MeijerG{{},{}},
1
2
,{0},
ax
2
,
1
2

In[2]:=
MeijerGForm
[Cos[ax+d],x]
Out[2]=
π
MeijerG{},
1
2
+
d
π
,0,
1
2
,
1
2
+
d
π
,
ax
2
,
1
2

​
Linear combination of trigonometric functions:
In[1]:=
MeijerGForm
[2Sin[x]+Cos[x],x]
Out[1]=
5π
MeijerG{},
ArcTan
1
2

π
,0,
1
2
,
ArcTan
1
2

π
,
x
2
,
1
2

​
Inverse trigonometric and hyperbolic functions:
In[1]:=
MeijerGForm
[ArcSin[x],x]
Out[1]=
-
MeijerG{{1,1},{}},
1
2
,{0},x,
1
2

2
π
In[2]:=
MeijerGForm
[ArcTanh[x],x]
Out[2]=
-
1
2
MeijerG
1
2
,1,{},
1
2
,{0},x,
1
2


Special Functions

Airy functions:
In[3]:=
MeijerGForm
[AiryAi[x],x]
Out[3]=
MeijerG{{},{}},0,
1
3
,{},
x
2/3
3
,
1
3

2
1/6
3
π
In[4]:=
MeijerGForm
[AiryBi[x],x]
Out[4]=
2πMeijerG{},
1
6
,
2
3
,0,
1
3
,
1
6
,
2
3
,
x
2/3
3
,
1
3

1/6
3
​
Bessel functions:
In[1]:=
MeijerGForm
[BesselJ[n,x],x]
Out[1]=
MeijerG{{},{}},
n
2
,-
n
2
,
x
2
,
1
2

In[2]:=
MeijerGForm
[BesselK[n,x],x]
Out[2]=
1
2
MeijerG{{},{}},
n
2
,-
n
2
,{},
x
2
,
1
2

​
Legendre functions:
In[1]:=
MeijerGForm
[LegendreQ[n,x],x]
Out[1]=
1
2
MeijerG{{1+n,-n},{}},{{0},{0}},
1
2
(-1-x)-Cos[nπ]MeijerG{{1+n,-n},{}},{{0},{0}},
1
2
(-1+x) if n∉
​
Hypergeometric functions:
In[1]:=
MeijerGForm
[Hypergeometric2F1[a,b,c,x],x]
Out[1]=
Gamma[c]MeijerG[{{1-a,1-b},{}},{{0},{1-c}},-x]
Gamma[a]Gamma[b]
​
Elliptic integrals:
In[1]:=
MeijerGForm
[EllipticK[m],m]
Out[1]=
1
2
MeijerG
1
2
,
1
2
,{},{{0},{0}},-m
In[2]:=
MeijerGForm
[EllipticE[m],m]
Out[2]=
-
1
4
MeijerG
1
2
,
3
2
,{},{{0},{0}},-m
Options  
(1)

Properties & Relations  
(1)

SeeAlso
MeijerG
▪
MeijerGReduce
▪
FoxH
▪
FoxHReduce
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com