Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
SpecialFunctionsAndCalculus
Tech Notes
Meijer-G/Fox-H Representation-Based Calculus
Symbols
MeijerGForm
WolframAlphaMath`SpecialFunctionsAndCalculus`
M
e
i
j
e
r
G
F
o
r
m
C
o
n
v
e
r
t
a
m
a
t
h
e
m
a
t
i
c
a
l
e
x
p
r
e
s
s
i
o
n
t
o
a
M
e
i
j
e
r
G
e
x
p
r
e
s
s
i
o
n
i
f
p
o
s
s
i
b
l
e
D
e
t
a
i
l
s
a
n
d
O
p
t
i
o
n
s
Examples
(
1
3
)
Basic Examples
(
2
)
Get the Meijer-G form of a trigonometric function:
I
n
[
1
]
:
=
M
e
i
j
e
r
G
F
o
r
m
[
S
i
n
[
z
]
,
z
]
O
u
t
[
1
]
=
π
M
e
i
j
e
r
G
{
{
}
,
{
}
}
,
1
2
,
{
0
}
,
z
2
,
1
2
Activating the result allows the
M
e
i
j
e
r
G
to evaluate, giving back the original function:
I
n
[
2
]
:
=
A
c
t
i
v
a
t
e
[
%
]
O
u
t
[
2
]
=
S
i
n
[
z
]
Represent
B
e
s
s
e
l
J
in terms of
M
e
i
j
e
r
G
:
I
n
[
1
]
:
=
M
e
i
j
e
r
G
F
o
r
m
[
B
e
s
s
e
l
J
[
1
,
a
x
]
,
x
]
O
u
t
[
1
]
=
M
e
i
j
e
r
G
{
{
}
,
{
}
}
,
1
2
,
-
1
2
,
a
x
2
,
1
2
Recover the original function using
A
c
t
i
v
a
t
e
:
I
n
[
2
]
:
=
A
c
t
i
v
a
t
e
[
%
]
O
u
t
[
2
]
=
B
e
s
s
e
l
J
[
1
,
a
x
]
Scope
(
9
)
E
l
e
m
e
n
t
a
r
y
F
u
n
c
t
i
o
n
s
Rational functions:
I
n
[
1
]
:
=
M
e
i
j
e
r
G
F
o
r
m
1
2
x
+
1
,
x
O
u
t
[
1
]
=
M
e
i
j
e
r
G
[
{
{
0
}
,
{
}
}
,
{
{
0
}
,
{
}
}
,
2
x
]
I
n
[
2
]
:
=
M
e
i
j
e
r
G
F
o
r
m
1
2
x
+
3
,
x
O
u
t
[
2
]
=
1
3
M
e
i
j
e
r
G
{
{
0
}
,
{
}
}
,
{
{
0
}
,
{
}
}
,
2
x
3
Algebraic functions:
I
n
[
1
]
:
=
M
e
i
j
e
r
G
F
o
r
m
1
x
+
1
,
x
O
u
t
[
1
]
=
M
e
i
j
e
r
G
{
{
0
}
,
{
}
}
,
{
{
0
}
,
{
}
}
,
x
Trigonometric functions:
I
n
[
1
]
:
=
M
e
i
j
e
r
G
F
o
r
m
[
S
i
n
[
a
x
]
,
x
]
O
u
t
[
1
]
=
π
M
e
i
j
e
r
G
{
{
}
,
{
}
}
,
1
2
,
{
0
}
,
a
x
2
,
1
2
I
n
[
2
]
:
=
M
e
i
j
e
r
G
F
o
r
m
[
C
o
s
[
a
x
+
d
]
,
x
]
O
u
t
[
2
]
=
π
M
e
i
j
e
r
G
{
}
,
1
2
+
d
π
,
0
,
1
2
,
1
2
+
d
π
,
a
x
2
,
1
2
Linear combination of trigonometric functions:
I
n
[
1
]
:
=
M
e
i
j
e
r
G
F
o
r
m
[
2
S
i
n
[
x
]
+
C
o
s
[
x
]
,
x
]
O
u
t
[
1
]
=
5
π
M
e
i
j
e
r
G
{
}
,
A
r
c
T
a
n
1
2
π
,
0
,
1
2
,
A
r
c
T
a
n
1
2
π
,
x
2
,
1
2
Inverse trigonometric and hyperbolic functions:
I
n
[
1
]
:
=
M
e
i
j
e
r
G
F
o
r
m
[
A
r
c
S
i
n
[
x
]
,
x
]
O
u
t
[
1
]
=
-
M
e
i
j
e
r
G
{
{
1
,
1
}
,
{
}
}
,
1
2
,
{
0
}
,
x
,
1
2
2
π
I
n
[
2
]
:
=
M
e
i
j
e
r
G
F
o
r
m
[
A
r
c
T
a
n
h
[
x
]
,
x
]
O
u
t
[
2
]
=
-
1
2
M
e
i
j
e
r
G
1
2
,
1
,
{
}
,
1
2
,
{
0
}
,
x
,
1
2
S
p
e
c
i
a
l
F
u
n
c
t
i
o
n
s
Airy functions:
I
n
[
3
]
:
=
M
e
i
j
e
r
G
F
o
r
m
[
A
i
r
y
A
i
[
x
]
,
x
]
O
u
t
[
3
]
=
M
e
i
j
e
r
G
{
{
}
,
{
}
}
,
0
,
1
3
,
{
}
,
x
2
/
3
3
,
1
3
2
1
/
6
3
π
I
n
[
4
]
:
=
M
e
i
j
e
r
G
F
o
r
m
[
A
i
r
y
B
i
[
x
]
,
x
]
O
u
t
[
4
]
=
2
π
M
e
i
j
e
r
G
{
}
,
1
6
,
2
3
,
0
,
1
3
,
1
6
,
2
3
,
x
2
/
3
3
,
1
3
1
/
6
3
Bessel functions:
I
n
[
1
]
:
=
M
e
i
j
e
r
G
F
o
r
m
[
B
e
s
s
e
l
J
[
n
,
x
]
,
x
]
O
u
t
[
1
]
=
M
e
i
j
e
r
G
{
{
}
,
{
}
}
,
n
2
,
-
n
2
,
x
2
,
1
2
I
n
[
2
]
:
=
M
e
i
j
e
r
G
F
o
r
m
[
B
e
s
s
e
l
K
[
n
,
x
]
,
x
]
O
u
t
[
2
]
=
1
2
M
e
i
j
e
r
G
{
{
}
,
{
}
}
,
n
2
,
-
n
2
,
{
}
,
x
2
,
1
2
Legendre functions:
I
n
[
1
]
:
=
M
e
i
j
e
r
G
F
o
r
m
[
L
e
g
e
n
d
r
e
Q
[
n
,
x
]
,
x
]
O
u
t
[
1
]
=
1
2
M
e
i
j
e
r
G
{
{
1
+
n
,
-
n
}
,
{
}
}
,
{
{
0
}
,
{
0
}
}
,
1
2
(
-
1
-
x
)
-
C
o
s
[
n
π
]
M
e
i
j
e
r
G
{
{
1
+
n
,
-
n
}
,
{
}
}
,
{
{
0
}
,
{
0
}
}
,
1
2
(
-
1
+
x
)
i
f
n
∉
Hypergeometric functions:
I
n
[
1
]
:
=
M
e
i
j
e
r
G
F
o
r
m
[
H
y
p
e
r
g
e
o
m
e
t
r
i
c
2
F
1
[
a
,
b
,
c
,
x
]
,
x
]
O
u
t
[
1
]
=
G
a
m
m
a
[
c
]
M
e
i
j
e
r
G
[
{
{
1
-
a
,
1
-
b
}
,
{
}
}
,
{
{
0
}
,
{
1
-
c
}
}
,
-
x
]
G
a
m
m
a
[
a
]
G
a
m
m
a
[
b
]
Elliptic integrals:
I
n
[
1
]
:
=
M
e
i
j
e
r
G
F
o
r
m
[
E
l
l
i
p
t
i
c
K
[
m
]
,
m
]
O
u
t
[
1
]
=
1
2
M
e
i
j
e
r
G
1
2
,
1
2
,
{
}
,
{
{
0
}
,
{
0
}
}
,
-
m
I
n
[
2
]
:
=
M
e
i
j
e
r
G
F
o
r
m
[
E
l
l
i
p
t
i
c
E
[
m
]
,
m
]
O
u
t
[
2
]
=
-
1
4
M
e
i
j
e
r
G
1
2
,
3
2
,
{
}
,
{
{
0
}
,
{
0
}
}
,
-
m
O
p
t
i
o
n
s
(
1
)
P
r
o
p
e
r
t
i
e
s
&
R
e
l
a
t
i
o
n
s
(
1
)
S
e
e
A
l
s
o
M
e
i
j
e
r
G
▪
M
e
i
j
e
r
G
R
e
d
u
c
e
▪
F
o
x
H
▪
F
o
x
H
R
e
d
u
c
e
"
"