Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

AreaMethod

Guides

  • Area Method Proofs

Symbols

  • Collinear
  • Concyclic
  • CongruentAngles
  • ECS1
  • ECS2
  • ECS3
  • ECS4
  • ECS5
  • EqualPoints
  • Equidistant
  • FreePoint
  • IsCentroid
  • IsCircumcenter
  • IsIntersection
  • IsMidpoint
  • IsOrthocenter
  • OnLine
  • OnParallel
  • OnPerpendicular
  • ParallelLines
  • PerpendicularFoot
  • PerpendicularLines
  • PythagoreanDifference
  • SignedArea
  • SignedDistance
  • VerifyConjecture
WolframAlphaMath`AreaMethod`
OnPerpendicular
​
OnPerpendicular
[y,u,v,construction]
constructs a point
y
on the line containing
u
and perpendicular to the line through
u
and
v
, such that
4

uvy
=

uvu
.
​
​
OnPerpendicular
[y,u,v,r,construction]
constructs a point
y
on the line containing
u
and perpendicular to the line through
u
and
v
, such that
4

uvy
=r

uvu
.
​
​
OnPerpendicular
[y,u,v,r]
represents an operator form of
OnPerpendicular
that can be applied to an expression.
​
Details and Options

Examples  
(4)
Basic Examples  
(2)
Construct an arbitrary rectangle:
In[1]:=
rectangle=
OnPerpendicular
d,b,a,r,
OnPerpendicular
c,a,b,-r,
FreePoint
[a,b]
Out[1]=
aECS1,points{},parameters{},order1,bECS1,points{},parameters{},order2,cECS5,points{a,b},parameters{-r},order3,dECS5,points{b,a},parameters{r},order4
​
Prove that any rectangle can be inscribed in a circle:
In[1]:=
VerifyConjecture

Concyclic
[a,b,c,d],rectangle
Out[1]=
True
Properties & Relations  
(1)

Possible Issues  
(1)

SeeAlso
ECS5
 
▪
OnParallel
 
▪
PerpendicularFoot
 
▪
VerifyConjecture
RelatedGuides
▪
Area Method Proofs
RelatedLinks
▪
The Area Method in the Wolfram Language
- ArXiv article
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com