Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

AreaMethod

Guides

  • Area Method Proofs

Symbols

  • Collinear
  • Concyclic
  • CongruentAngles
  • ECS1
  • ECS2
  • ECS3
  • ECS4
  • ECS5
  • EqualPoints
  • Equidistant
  • FreePoint
  • IsCentroid
  • IsCircumcenter
  • IsIntersection
  • IsMidpoint
  • IsOrthocenter
  • OnLine
  • OnParallel
  • OnPerpendicular
  • ParallelLines
  • PerpendicularFoot
  • PerpendicularLines
  • PythagoreanDifference
  • SignedArea
  • SignedDistance
  • VerifyConjecture
WolframAlphaMath`AreaMethod`
IsIntersection
​
IsIntersection
[y,u,v,p,q,construction]
declares
y
to be the intersection of the line through
u
and
v
and the line through
p
and
q
in
construction
.
​
​
IsIntersection
[y,u,v,p,q]
represents an operator form of
IsIntersection
that can be applied to an expression.
​
Details and Options

Examples  
(2)
Basic Examples  
(1)
Construct the intersection of two lines:
In[1]:=
IsIntersection
p,a,b,c,d,
FreePoint
[a,b,c,d]
Out[1]=
aECS1,points{},parameters{},order1,bECS1,points{},parameters{},order2,cECS1,points{},parameters{},order3,dECS1,points{},parameters{},order4,pECS2,points{a,b,c,d},parameters{},order5
Prove Ceva's Theorem:
In[2]:=
cevasConstruction=
IsIntersection
f,c,p,a,b,
IsIntersection
e,b,p,a,c,
IsIntersection
d,a,p,b,c,
FreePoint
[a,b,c,p]
Out[2]=
aECS1,points{},parameters{},order1,bECS1,points{},parameters{},order2,cECS1,points{},parameters{},order3,pECS1,points{},parameters{},order4,dECS2,points{a,p,b,c},parameters{},order5,eECS2,points{b,p,a,c},parameters{},order6,fECS2,points{c,p,a,b},parameters{},order7
In[3]:=
VerifyConjecture

SignedDistance
[a,f]
SignedDistance
[f,b]
SignedDistance
[b,d]
SignedDistance
[d,c]
SignedDistance
[c,e]
SignedDistance
[e,a]
1,cevasConstruction
Out[3]=
True
Properties & Relations  
(1)

SeeAlso
ECS2
 
▪
VerifyConjecture
RelatedGuides
▪
Area Method Proofs
RelatedLinks
▪
The Area Method in the Wolfram Language
- ArXiv article
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com