Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

QuantumFramework

Tutorials

  • Getting Started

Guides

  • Wolfram Quantum Computation Framework

Tech Notes

  • Bell's Theorem
  • Circuit Diagram
  • Exploring Fundamentals of Quantum Theory
  • QPU Service Connection
  • Quantum object abstraction
  • Quantum Optimization
  • Second Quantization Functions
  • Tensor Network
  • Quantum Computation

Symbols

  • QuantumBasis
  • QuantumChannel
  • QuantumCircuitMultiwayGraph [EXPERIMENTAL]
  • QuantumCircuitOperator
  • QuantumDistance
  • QuantumEntangledQ
  • QuantumEntanglementMonotone
  • QuantumEvolve
  • QuantumMeasurement
  • QuantumMeasurementOperator
  • QuantumMeasurementSimulation
  • QuantumMPS [EXPERIMENTAL]
  • QuantumOperator
  • QuantumPartialTrace
  • QuantumPhaseSpaceTransform
  • QuantumShortcut [EXPERIMENTAL]
  • QuantumStateEstimate [EXPERIMENTAL]
  • QuantumState
  • QuantumTensorProduct
  • QuantumWignerMICTransform [EXPERIMENTAL]
  • QuantumWignerTransform [EXPERIMENTAL]
  • QuditBasis
  • QuditName
Wolfram`QuantumFramework`
QuantumPhaseSpaceTransform
​
QuantumPhaseSpaceTransform[object,basis]
represents the transformation of quantum object into the phase space basis
​
Details and Options

Examples  
(5)
Basic Examples  
(3)
Create a random mixed state:
In[1]:=
SeedRandom[0];​​ρ=
QuantumState
["RandomMixed"]
Out[1]=
QuantumState
Mixed state
Qudits: 1
Type: Matrix
Dimension: 2

Transform into Tetrahedron basis and return amplitudes
In[2]:=
QuantumPhaseSpaceTransform
[ρ,"Tetrahedron"]["Amplitudes"]
Out[2]=
|

1
〉0.392528,|

2
〉0.300255,|

3
〉0.114132,|

4
〉0.193084
Show probabilities from TetrahedronSICPOVM measurement:
In[3]:=
QuantumMeasurementOperator
["TetrahedronSICPOVM"][ρ]["Probabilities"]
Out[3]=
|

1
〉0.392528,|

2
〉0.300255,|

3
〉0.114132,|

4
〉0.193084
Check they are the same
In[4]:=
%%%
Out[4]=
True
​
Transform a quantum circuit:
In[1]:=
QuantumPhaseSpaceTransform

QuantumCircuitOperator
["CHSH"]["Diagram","ShowWireDimensions"True]
Out[1]=
Pay attention to the dimension of wire (which are doubled, compared to the conventional Hilbert space representation).
​
Generate a random mixed state:
In[1]:=
SeedRandom[0];​​ρ=
QuantumState
["RandomMixed"]
Out[1]=
QuantumState
Mixed state
Qudits: 1
Type: Matrix
Dimension: 2

Show Hadamard operator in the QBismSIC basis:
In[2]:=
QuantumPhaseSpaceTransform

QuantumOperator
["H"],"QBismSIC"["Table"]
Out[2]//TableForm=
〈

1
|
〈

2
|
〈

3
|
〈

4
|
|

1
〉
0.5
0.5
0.5
-0.5
|

2
〉
0.5
-0.5
0.5
0.5
|

3
〉
0.5
0.5
-0.5
0.5
|

4
〉
-0.5
0.5
0.5
0.5
Show the state (vectorized) in the QBismSIC basis:
In[3]:=
QuantumPhaseSpaceTransform
[ρ,"QBismSIC"]["AmplitudesList"]
Out[3]=
{0.392333,0.272244,0.0961469,0.239276}
Check that the transformation in the phase space returns the same stat as the one in the Hilbert space:
In[4]:=
QuantumWeylTransform@
QuantumPhaseSpaceTransform

QuantumOperator
["H"],"QBismSIC"@
QuantumPhaseSpaceTransform
[ρ,"QBismSIC"]
QuantumOperator
["H"][ρ]
Out[4]=
True
Scope  
(2)

SeeAlso
QuantumWignerTransform
 
▪
QuantumBasis
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com