Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

QuantumFramework

Tutorials

  • Getting Started

Guides

  • Wolfram Quantum Computation Framework

Tech Notes

  • Bell's Theorem
  • Circuit Diagram
  • Example Repository Functions
  • Exploring Fundamentals of Quantum Theory
  • Quantum object abstraction
  • Tensor Network

Symbols

  • QuantumBasis
  • QuantumChannel
  • QuantumCircuitMultiwayGraph [EXPERIMENTAL]
  • QuantumCircuitOperator
  • QuantumDistance
  • QuantumEntangledQ
  • QuantumEntanglementMonotone
  • QuantumEvolve
  • QuantumMeasurement
  • QuantumMeasurementOperator
  • QuantumMeasurementSimulation
  • QuantumMPS [EXPERIMENTAL]
  • QuantumOperator
  • QuantumPartialTrace
  • QuantumShortcut [EXPERIMENTAL]
  • QuantumStateEstimate [EXPERIMENTAL]
  • QuantumState
  • QuantumTensorProduct
  • QuantumWignerMICTransform [EXPERIMENTAL]
  • QuantumWignerTransform [EXPERIMENTAL]
  • QuditBasis
  • QuditName
Example Repository Functions
Gradient-Based Optimization Methods
Examples Custom Functions
In this Tech Note, we document the implementation and utilization of essential functions used in the
Wolfram Language Example Repository
for Quantum Computing algorithms. The examples include the Quantum Natural Gradient Descent, Stochastic Parameter Shift Rule and more.
By providing a comprehensive overview and usage guidelines for these functions, we aim to introduce new and experienced users into quantum optimization techniques, quantum machine learning and quantum computing research.
Gradient-Based Optimization Methods
Gradient-based optimization methods represent a cornerstone in the field of numerical optimization, offering powerful techniques to minimize or maximize objective functions in various domains, ranging from machine learning and deep learning to physics and engineering. These methods leverage the gradient, or derivative, of the objective function with respect to its parameters to iteratively update them in a direction that reduces the function's value.
In this Tech Note, we'll provide illustrative examples for both conventional gradient descent and quantum natural gradient descent methods.
GradientDescent[f,{
value
1
,
value
2
,… }, opts]
calculates the gradient descent of f using
value
i
as initial parameters.
QuantumNaturalGradientDescent[f,{
value
1
,
value
2
,… },metric ,opts]
calculates the gradient descent of f using
value
i
as initial parameters and metric as
metric
tensor to define the parameters space.
We will briefly demonstrate how to apply all these functions in Wolfram quantum framework.

GradientDescent

QuantumNaturalGradientDescent

Examples Custom Functions
Feel free to explore the examples we've prepared on quantum computing within the
Wolfram Language Example Repository
. This section exclusively focuses on functions tailored for each examples and their specific application.

Quantum Natural Gradient Descent

Stochastic Parameter Shift–Rule

""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com