Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

QuantumFramework

Tutorials

  • Getting Started

Guides

  • Wolfram Quantum Computation Framework

Tech Notes

  • Circuit Diagram
  • Exploring Fundamentals of Quantum Theory
  • Quantum object abstraction
  • Tensor Network

Symbols

  • QuantumBasis
  • QuantumChannel
  • QuantumCircuitMultiwayGraph[EXPERIMENTAL]
  • QuantumCircuitOperator
  • QuantumDistance
  • QuantumEntangledQ
  • QuantumEntanglementMonotone
  • QuantumEvolve
  • QuantumMeasurement
  • QuantumMeasurementOperator
  • QuantumMeasurementSimulation
  • QuantumMPS [EXPERIMENTAL]
  • QuantumOperator
  • QuantumPartialTrace
  • QuantumShortcut [EXPERIMENTAL]
  • QuantumStateEstimate [EXPERIMENTAL]
  • QuantumState
  • QuantumTensorProduct
  • QuantumWignerTransform
  • QuditBasis
  • QuditName
Wolfram`QuantumFramework`
QuantumTensorProduct
​
​
QuantumTensorProduct
[qds]
gives the tensor product of the quantum states in the list or sequence
qss
.
​
​
QuantumTensorProduct
[qbs]
gives the tensor product of quantum bases in the list or sequence
qbs
.
​
​
QuantumTensorProduct
[qdo]
gives the tensor product of the quantum discrete operators in the list or sequence
qdo
.
​
​
QuantumTensorProduct
[qmo]
gives the tensor product of the quantum measurement operators in the list or sequence
qmo
.
​
Details and Options

Examples  
(6)
Basic Examples  
(4)
Compute the tensor product of two pure states:
In[1]:=
QuantumTensorProduct

QuantumState
[{1,0}],
QuantumState
[{1/Sqrt[2],0,0,1/Sqrt[2]}]
Out[1]=
QuantumState
StateType: Vector
Qudits: 3
Type: Pure
Dimension: 8
Picture: Schrödinger
​

​
Construct the tensor product of two quantum bases:
In[1]:=
basis=
QuantumTensorProduct

QuantumBasis
["PauliX"],
QuantumBasis
["PauliZ"]
Out[1]=
QuantumBasis
Picture: Schrödinger
Rank: 2
Dimension: 4
​

In[2]:=
Normal/@basis["ElementAssociation"]
Out[2]=

ψ
x-
ψ
z-
0,-
1
2
,0,
1
2
,
ψ
x-
ψ
z+
-
1
2
,0,
1
2
,0,
ψ
x+
ψ
z-
0,
1
2
,0,
1
2
,
ψ
x+
ψ
z+

1
2
,0,
1
2
,0
​
Find the tensor product of two quantum operators:
In[1]:=
QuantumTensorProduct

QuantumOperator
["PauliZ"],
QuantumOperator
["PauliX"]
Out[1]=
QuantumOperator
Picture: Schrödinger
Arity: 2
Dimension: 4→4
Qudits: 2→2

​
Get the tensor product of two quantum measurement operator:
In[1]:=
QuantumTensorProduct

QuantumMeasurementOperator
["PauliZ",{1}],
QuantumMeasurementOperator
["PauliX",{2}]
Out[1]=
QuantumMeasurementOperator
Measurement Type: Projection
Target: {1,2}
Dimension: 4→4
Qudits: 2→2

Scope  
(1)

Applications  
(1)

SeeAlso
QuantumState
 
▪
QuantumBasis
 
▪
QuantumPartialTrace
RelatedGuides
▪
Wolfram Quantum Computation Framework
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com