Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

QuantumFramework

Tutorials

  • Getting Started

Guides

  • Wolfram Quantum Computation Framework

Tech Notes

  • Diagram
  • Exploring Fundamentals of Quantum Theory
  • Quantum Computation

Symbols

  • QuantumBasis
  • QuantumChannel
  • QuantumCircuitOperator
  • QuantumDistance
  • QuantumEntangledQ
  • QuantumEntanglementMonotone
  • QuantumEvolve
  • QuantumMeasurement
  • QuantumMeasurementOperator
  • QuantumMeasurementSimulation
  • QuantumOperator
  • QuantumPartialTrace
  • QuantumStateEstimate[EXPERIMENTAL]
  • QuantumState
  • QuantumTensorProduct
  • QuditBasis
  • QuditName
Wolfram`QuantumFramework`
QuantumEvolve
​
QuantumEvolve
[op]
represents a symbolic quantum state evolved in time with the symbolic Hamiltonian
op
, from the initial register state, by setting the variable
t
as the time parameter.
​
​
QuantumEvolve
[op,qs,t]
represents a symbolic quantum state evolved in time with the symbolic Hamiltonian
op
, from the initial state
qs
, and time as
t
.
​
​
QuantumEvolve
[op,qs,{t,
t
i
,
t
f
}]
represents a numeric quantum state evolved in time with the numeric Hamiltonian
op
, from the initial numeric state
qs
, with variable
t
as time in the range
t
i
to
t
f
.
​
​
QuantumEvolve
[op,
None
,…]
represents an evolution operator of the Hamiltonian
op
.
​
Details and Options

Examples  
(5)
Basic Examples  
(4)
Evolve a symbolic quantum state by a time-independent Hamiltonian, with independent variable 
t
:
In[1]:=
ψf=
QuantumEvolve

QuantumOperator
["X"],
QuantumState
[{α,β}],t;
Show the final state vector:
In[2]:=
ψf["StateVector"]//MatrixForm
Out[2]//MatrixForm=
αCos[t]-βSin[t]
βCos[t]-αSin[t]
Start with register state, without specifying any independent variable (note 
t
will be treated as formal parameter):
In[3]:=
QuantumEvolve

QuantumOperator
["X"]["StateVector"]//MatrixForm
Out[3]//MatrixForm=
Cos[t.]
-Sin[t.]
If initial state is
None
,
QuantumEvolve
returns an evolution operator as
QuantumOperator
:
In[4]:=
U=
QuantumEvolve

QuantumOperator
["X"],None,t
Out[4]=
QuantumOperator
Picture: Schrödinger
Arity: 1
Dimension: 2→2
Qudits: 1→1

​
Define a time-dependent Hamiltonian:
In[1]:=
hamiltonian=
ω
1
2
Cos[α]
QuantumOperator
["Z"]+
ω
1
2
Sin[α]Cos[ωt]
QuantumOperator
["X"]+Sin[ωt]
QuantumOperator
["Y"];​​hamiltonian["Matrix"]//MatrixForm
Out[1]//MatrixForm=
1
2
Cos[α]
ω
1
1
2
Sin[α](Cos[tω]-Sin[tω])
ω
1
1
2
Sin[α](Cos[tω]+Sin[tω])
ω
1
-
1
2
Cos[α]
ω
1
Define a symbolic initial state:
In[2]:=
ψi=
QuantumState
[{Cos[α/2],Sin[α/2]}];
Evolve the initial state with the Hamiltonian:
In[3]:=
ψf=
QuantumEvolve
[hamiltonian,ψi,t];
Show the final state vector, with
λ=
-
2
ω
+2ωCos[α]
ω
1
-
2
ω
1
:
In[4]:=
FullSimplify[Normal[ψf["StateVector"]]]/.
_
λ,1
_
1λ
Out[4]=

-
1
2
tω

Cos
α
2
Cosh
tλ
2
+
Sinh
tλ
2
(ω-
ω
1
)
λ
,
tω
2

Sin
α
2
Cosh
tλ
2
-
Sinh
tλ
2
(ω+
ω
1
)
λ

​
Evolution operator of a given Hamiltonian:
In[1]:=
u=
QuantumEvolve

QuantumOperator
["X"],None,t
Out[1]=
QuantumOperator
Picture: Schrödinger
Arity: 1
Dimension: 2→2
Qudits: 1→1

In[2]:=
u["Matrix"]//MatrixForm
Out[2]//MatrixForm=
Cos[t]
-Sin[t]
-Sin[t]
Cos[t]
​
Define a time-dependent Hamiltonian:
In[1]:=
hamiltonian=
1
2
ω
0
QuantumOperator
["Z"]+γCos[
ω
p
t]
QuantumOperator
["X"];
Given some numerical values for Hamiltonian parameters, find the final state:
In[2]:=
ω
0
=2π
8
10
;γ=.7;
ω
p
=2π
7
10
;​​tmin=0;tmax=5
ω
p
;​​ψf=
QuantumEvolve
[hamiltonian,{t,tmin,tmax}];
Show the state vector:
In[3]:=
ψf["StateVector"]//Normal
Out[3]=
InterpolatingFunction
Domain: 0.,7.96×
-8
10

Output: scalar
[t],InterpolatingFunction
Domain: 0.,7.96×
-8
10

Output: scalar
[t]
Plot real and imaginary part of first element of state vector:
In[4]:=
ReImPlot[ψf["StateVector"]〚1〛,{t,tmin,tmax}]
Out[4]=
Possible Issues  
(1)

SeeAlso
QuantumState
 
▪
QuantumOperator
RelatedGuides
▪
Wolfram Quantum Computation Framework
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com