Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

QuantumFramework

Tutorials

  • Getting Started

Guides

  • Wolfram Quantum Computation Framework

Tech Notes

  • Diagram
  • Exploring Fundamentals of Quantum Theory
  • Quantum Computation

Symbols

  • QuantumBasis
  • QuantumChannel
  • QuantumCircuitOperator
  • QuantumDistance
  • QuantumEntangledQ
  • QuantumEntanglementMonotone
  • QuantumEvolve
  • QuantumMeasurement
  • QuantumMeasurementOperator
  • QuantumMeasurementSimulation
  • QuantumOperator
  • QuantumPartialTrace
  • QuantumStateEstimate
  • QuantumState
  • QuantumTensorProduct
  • QuditBasis
  • QuditName
Wolfram`QuantumFramework`
QuantumMeasurement
​
QuantumMeasurement
[dist,s]
represents the result of a quantum measurement described by an association of outcomes with their corresponding probabilities
dist
and the list
s
of possible quantum states after the measurement.
​
Details and Options

Examples  
(7)
Basic Examples  
(2)
Define a
QuantumMeasurement
object by explicitly specifying the inputs:
In[1]:=
QuantumMeasurement

QuditName
[0]0.64,
QuditName
[1]0.36,
QuantumState
[{{1,2},{0,1}}],
QuantumState
[{0,1}]
Out[1]=
QuantumMeasurement
Target: {1}
Measurement Outcomes: 2

​
QuantumMeasurement
is automatically generated when
QuantumMeasurementOperator
acts on a state:
In[1]:=
result=
QuantumMeasurementOperator
["PauliZ",{1}]
QuantumState
[{0.6,0.8}]​​
Out[1]=
QuantumMeasurement
Target: {1}
Measurement Outcomes: 2

Use property
"Distribution"
to obtain the resulting measurement outcome's distribution:
In[2]:=
result["Distribution"]
Out[2]=
CategoricalDistribution
Input type: Scalar
Categories:

ψ
z
-


ψ
z
+


Use property
"States"
to obtain the possible states after measurement:
In[3]:=
result["States"]
Out[3]=
QuantumState
StateType: Vector
Qudits: 1
Type: Pure
Dimension: 2
Picture: Schrödinger
​
,QuantumState
StateType: Vector
Qudits: 1
Type: Pure
Dimension: 2
Picture: Schrödinger
​

Use property
"StatesAssociation"
to obtain the association of measurement outcomes with their corresponding quantum state:
In[4]:=
result["StatesAssociation"]
Out[4]=

ψ
z
-
QuantumState
StateType: Vector
Qudits: 1
Type: Pure
Dimension: 2
Picture: Schrödinger
​
,
ψ
z
+
QuantumState
StateType: Vector
Qudits: 1
Type: Pure
Dimension: 2
Picture: Schrödinger
​

Scope  
(1)

Generalizations & Extensions  
(1)

Applications  
(1)

Properties & Relations  
(1)

Interactive Examples  
(1)

SeeAlso
QuantumMeasurementOperator
 
▪
QuantumState
 
▪
QuantumOperator
 
▪
CategoricalDistribution
RelatedGuides
▪
Wolfram Quantum Computation Framework
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com