Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

QuantumFramework

Tutorials

  • Getting Started

Guides

  • Wolfram Quantum Computation Framework

Tech Notes

  • Diagram
  • Exploring Fundamentals of Quantum Theory
  • Quantum Computation

Symbols

  • QuantumBasis
  • QuantumChannel
  • QuantumCircuitOperator
  • QuantumDistance
  • QuantumEntangledQ
  • QuantumEntanglementMonotone
  • QuantumMeasurement
  • QuantumMeasurementOperator
  • QuantumMeasurementSimulation
  • QuantumOperator
  • QuantumPartialTrace
  • QuantumStateEstimate
  • QuantumState
  • QuantumTensorProduct
  • QuditBasis
  • QuditName
Wolfram`QuantumFramework`
QuantumEntanglementMonotone
​
QuantumEntanglementMonotone
[qs,bipart,t]
computes the entanglement monotone using the measure or metric
t
on the quantum state
qs
between subsystems on bipartition list
bipart
.
​
Details and Options

Examples  
(12)
Basic Examples  
(5)
Compute the concurrence of a quantum state:
In[1]:=
QuantumEntanglementMonotone

QuantumState
[{0.6,0,0,0.8}],"Concurrence"
Out[1]=
0.96
​
Compute entanglement entropy:
In[1]:=
QuantumEntanglementMonotone

QuantumState
[{0.6,0,0,0.8}],"EntanglementEntropy"
Out[1]=
0.942683
b
​
Compute negativity:
In[1]:=
QuantumEntanglementMonotone

QuantumState
[{0.6,0,0,0.8}],{{1},{2}},"Negativity"
Out[1]=
0.48
​
Compute logarithmic negativity:
In[1]:=
QuantumEntanglementMonotone

QuantumState
[{0.6,0,0,0.8}],{{1},{2}},"LogNegativity"
Out[1]=
0.970854
In[2]:=
​
​
Compute Renyi α-entropy with
α=0.25
:
In[1]:=
QuantumEntanglementMonotone

QuantumState
[{0.6,0,0,0.8}],{{1},{2}},{"RenyiEntropy",.25}
Out[1]=
0.985339
Scope  
(3)

Applications  
(3)

Properties & Relations  
(1)

SeeAlso
QuantumState
 
▪
QuantumPartialTrace
RelatedGuides
▪
Wolfram Quantum Computation Framework
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com