Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

QuantumFramework

Tutorials

  • Getting Started

Guides

  • Wolfram Quantum Computation Framework

Tech Notes

  • Diagram
  • Exploring Fundamentals of Quantum Theory
  • Quantum Computation

Symbols

  • QuantumBasis
  • QuantumChannel
  • QuantumCircuitOperator
  • QuantumDistance
  • QuantumEntangledQ
  • QuantumEntanglementMonotone
  • QuantumMeasurement
  • QuantumMeasurementOperator
  • QuantumMeasurementSimulation
  • QuantumOperator
  • QuantumPartialTrace
  • QuantumStateEstimate
  • QuantumState
  • QuantumTensorProduct
  • QuditBasis
  • QuditName

Getting Started

How to install and load the paclet
Install the paclet from the cloud:
In[1]:=
PacletInstall["https://wolfr.am/DevWQCF",ForceVersionInstallTrue]
Out[1]=
PacletObject
Name: Wolfram/QuantumFramework
Version: 1.0.22

Load the paclet:
In[2]:=
<<Wolfram`QuantumFramework`
Check whether definitions are now available:
In[3]:=
Names["Quantum*"]
Out[3]=
{QuantumBasis,QuantumChannel,QuantumCircuitOperator,QuantumDiagramProcess,QuantumDistance,QuantumEntangledQ,QuantumEntanglementMonotone,QuantumLabelName,QuantumMeasurement,QuantumMeasurementOperator,QuantumOperator,QuantumPartialTrace,QuantumPartialTranspose,QuantumState,QuantumStateEstimate,QuantumStateEstimation,QuantumStateSampler,QuantumTensorProduct,QuantumWignerTransform}
A quantum gate for the magic basis transformation (transforming 2 qubit computational basis to the Bell basis):
In[4]:=
qc=
QuantumCircuitOperator
[{"S","S"2,"H"2,"CNOT"{2,1}}];​​qc["Diagram"]
Out[4]=
Contents cannot be rendered at this time; please try again later
In[5]:=
qc
QuantumState
["00"]
QuantumState
["PhiPlus"]
Out[5]=
True
In[6]:=
qc
QuantumState
["10"]
QuantumState
["PsiPlus"]
Out[6]=
True
In[7]:=
qc
QuantumState
["01"]
QuantumState
["PhiMinus"]
Out[7]=
True
In[8]:=
qc
QuantumState
["11"]
QuantumState
["PsiMinus"]
Out[8]=
True
Decomposition of a general controlled-controlled-U gate using
V=
Sqrt
[U]
:
In[9]:=
u=
QuantumOperator
["H",{3}];​​qc=
QuantumCircuitOperator
[{{"C",u,{1,2}}}];​​qc["Diagram"]
Out[9]=
Define the quantum operator v as the square-root of u:
In[139]:=
v=
QuantumOperator
[Sqrt[u],"Label""V"]
Out[139]=
QuantumOperator
Picture: Schrödinger
Arity: 1
Dimension: 2→2
Qudits: 1→1

Construct the decomposition circuit:
In[140]:=
decomp=
QuantumCircuitOperator
[{{"C",v,{2}},"CX",{"C",v["Dagger"],{2}},"CX",{"C",v,{1}}}];​​decomp["Diagram"]
Out[141]=
Contents cannot be rendered at this time; please try again later
​
​
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com