Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
Multicomputation
Tech Notes
MultiwaySystem in depth
Symbols
FromLinkedHypergraph
Multi
MultiwaySystem
ToLinkedHypergraph
MultiwaySystem in depth
Make a string multiway system:
I
n
[
4
2
7
]
:
=
m
u
l
t
i
=
M
u
l
t
i
w
a
y
S
y
s
t
e
m
[
{
"
B
B
"
"
A
B
"
,
"
A
"
"
B
A
"
}
,
{
"
A
"
,
"
A
A
"
}
]
O
u
t
[
4
2
7
]
=
M
u
l
t
i
w
a
y
S
y
s
t
e
m
T
y
p
e
:
S
t
r
i
n
g
I
n
[
4
2
8
]
:
=
m
u
l
t
i
[
"
E
x
p
r
e
s
s
i
o
n
"
]
O
u
t
[
4
2
8
]
=
{
{
{
1
,
A
,
0
}
}
,
{
{
1
,
A
,
2
}
,
{
2
,
A
,
0
}
}
}
I
n
[
4
2
9
]
:
=
A
p
p
l
y
S
t
r
i
n
g
R
u
l
e
s
[
m
u
l
t
i
[
"
E
x
p
r
e
s
s
i
o
n
"
]
〚
1
〛
,
{
"
B
B
"
"
A
B
"
,
"
A
"
"
B
A
"
}
]
O
u
t
[
4
2
9
]
=
I
n
p
u
t
{
1
}
,
O
u
t
p
u
t
{
1
,
c
.
$
1
7
7
5
7
8
6
}
,
R
u
l
e
2
,
P
o
s
i
t
i
o
n
{
{
1
}
}
{
{
1
,
B
,
c
.
$
1
7
7
5
7
8
6
}
,
{
c
.
$
1
7
7
5
7
8
6
,
A
,
0
}
}
I
n
[
4
3
0
]
:
=
m
u
l
t
i
[
"
R
u
l
e
s
"
]
O
u
t
[
4
3
0
]
=
{
H
.
_
A
p
p
l
y
S
t
r
i
n
g
R
u
l
e
s
[
H
.
,
{
B
B
A
B
,
A
B
A
}
]
}
I
n
[
4
3
1
]
:
=
m
u
l
t
i
[
"
P
r
o
p
e
r
t
i
e
s
"
]
O
u
t
[
4
3
1
]
=
{
A
l
l
S
t
a
t
e
s
B
r
a
n
c
h
i
a
l
G
r
a
p
h
,
B
r
a
n
c
h
i
a
l
G
r
a
p
h
,
C
a
u
s
a
l
B
r
a
n
c
h
i
a
l
G
r
a
p
h
,
C
a
u
s
a
l
E
v
o
l
u
t
i
o
n
G
r
a
p
h
,
C
a
u
s
a
l
G
r
a
p
h
,
C
a
u
s
a
l
S
t
a
t
e
s
G
r
a
p
h
,
E
v
o
l
u
t
i
o
n
C
a
u
s
a
l
G
r
a
p
h
,
E
v
o
l
u
t
i
o
n
E
v
e
n
t
s
G
r
a
p
h
,
E
v
o
l
u
t
i
o
n
G
r
a
p
h
,
G
r
a
p
h
,
M
u
l
t
i
,
P
r
o
p
e
r
t
i
e
s
,
S
t
a
t
e
s
G
r
a
p
h
,
T
o
k
e
n
E
v
e
n
t
G
r
a
p
h
,
T
y
p
e
}
I
n
[
4
3
2
]
:
=
m
u
l
t
i
[
"
M
u
l
t
i
"
]
O
u
t
[
4
3
2
]
=
M
u
l
t
i
{
{
{
1
,
"
A
"
,
0
}
}
,
{
{
1
,
"
A
"
,
2
}
,
{
2
,
"
A
"
,
0
}
}
}
M
a
t
c
h
e
s
:
2
I
n
[
4
3
3
]
:
=
m
u
l
t
i
[
"
M
u
l
t
i
"
]
[
"
P
r
o
p
e
r
t
i
e
s
"
]
O
u
t
[
4
3
3
]
=
{
E
x
p
r
e
s
s
i
o
n
,
H
o
l
d
E
x
p
r
e
s
s
i
o
n
,
D
a
t
a
,
P
l
a
c
e
h
o
l
d
e
r
s
,
B
i
n
d
i
n
g
s
,
L
i
s
t
V
a
l
u
e
s
,
H
o
l
d
L
i
s
t
V
a
l
u
e
s
,
E
v
a
l
u
a
t
e
L
i
s
t
,
H
o
l
d
E
v
a
l
u
a
t
e
L
i
s
t
,
E
v
a
l
u
a
t
e
L
i
s
t
O
n
c
e
,
H
o
l
d
E
v
a
l
u
a
t
e
L
i
s
t
O
n
c
e
,
E
v
a
l
u
a
t
e
,
H
o
l
d
E
v
a
l
u
a
t
e
,
E
v
a
l
u
a
t
e
O
n
c
e
,
H
o
l
d
E
v
a
l
u
a
t
e
O
n
c
e
,
M
u
l
t
i
L
i
s
t
,
L
i
s
t
E
v
a
l
u
a
t
e
,
H
o
l
d
L
i
s
t
E
v
a
l
u
a
t
e
,
M
u
l
t
i
L
i
s
t
E
v
a
l
u
a
t
e
,
H
o
l
d
M
u
l
t
i
L
i
s
t
E
v
a
l
u
a
t
e
,
M
u
l
t
i
E
v
a
l
u
a
t
e
,
H
o
l
d
M
u
l
t
i
E
v
a
l
u
a
t
e
,
E
d
g
e
s
,
H
o
l
d
E
d
g
e
s
,
G
r
a
p
h
,
H
o
l
d
G
r
a
p
h
}
I
n
[
4
3
4
]
:
=
m
u
l
t
i
[
"
M
u
l
t
i
"
]
[
"
E
v
e
n
t
s
"
]
O
u
t
[
4
3
4
]
=
{
{
{
{
{
1
}
}
,
R
u
l
e
,
{
1
,
{
H
.
_
{
{
1
,
A
,
0
}
}
}
}
,
{
I
n
p
u
t
{
1
}
,
O
u
t
p
u
t
{
1
,
c
.
$
1
7
7
6
2
6
2
}
,
R
u
l
e
2
,
P
o
s
i
t
i
o
n
{
{
1
}
}
}
}
{
{
{
1
,
B
,
c
.
$
1
7
7
6
2
6
2
}
,
{
c
.
$
1
7
7
6
2
6
2
,
A
,
0
}
}
}
}
,
{
{
{
{
2
}
}
,
R
u
l
e
,
{
1
,
{
H
.
_
{
{
1
,
A
,
2
}
,
{
2
,
A
,
0
}
}
}
}
,
{
I
n
p
u
t
{
1
}
,
O
u
t
p
u
t
{
1
,
c
.
$
1
7
7
6
5
2
6
}
,
R
u
l
e
2
,
P
o
s
i
t
i
o
n
{
{
1
}
}
,
I
n
p
u
t
{
2
}
,
O
u
t
p
u
t
{
2
,
c
.
$
1
7
7
6
5
2
7
}
,
R
u
l
e
2
,
P
o
s
i
t
i
o
n
{
{
2
}
}
}
}
{
{
{
1
,
B
,
c
.
$
1
7
7
6
5
2
6
}
,
{
c
.
$
1
7
7
6
5
2
6
,
A
,
2
}
,
{
2
,
A
,
0
}
}
,
{
{
1
,
A
,
2
}
,
{
2
,
B
,
c
.
$
1
7
7
6
5
2
7
}
,
{
c
.
$
1
7
7
6
5
2
7
,
A
,
0
}
}
}
}
}
I
n
[
4
3
5
]
:
=
m
u
l
t
i
[
"
M
u
l
t
i
"
]
[
"
G
r
a
p
h
"
,
4
]
O
u
t
[
4
3
5
]
=
I
n
[
4
3
6
]
:
=
m
u
l
t
i
[
"
S
t
a
t
e
s
G
r
a
p
h
"
,
3
,
A
s
p
e
c
t
R
a
t
i
o
1
/
2
]
O
u
t
[
4
3
6
]
=
I
n
[
4
3
7
]
:
=
c
g
=
m
u
l
t
i
[
"
C
a
u
s
a
l
G
r
a
p
h
"
,
3
,
"
I
n
c
l
u
d
e
I
n
i
t
i
a
l
E
v
e
n
t
"
T
r
u
e
]
O
u
t
[
4
3
7
]
=
I
n
[
4
3
9
]
:
=
m
u
l
t
i
[
"
E
v
o
l
u
t
i
o
n
C
a
u
s
a
l
G
r
a
p
h
"
,
3
]
O
u
t
[
4
3
9
]
=
Make an expression multiway system:
I
n
[
4
4
4
]
:
=
m
u
l
t
i
=
M
u
l
t
i
w
a
y
S
y
s
t
e
m
[
{
x
_
∘
y
_
(
y
∘
x
)
∘
y
,
(
y
_
∘
x
_
)
∘
y
_
x
∘
y
}
,
(
a
∘
b
)
∘
a
]
O
u
t
[
4
4
4
]
=
M
u
l
t
i
w
a
y
S
y
s
t
e
m
T
y
p
e
:
E
x
p
r
e
s
s
i
o
n
I
n
[
4
4
5
]
:
=
m
u
l
t
i
[
"
S
t
a
t
e
s
G
r
a
p
h
"
,
3
,
G
r
a
p
h
L
a
y
o
u
t
"
S
p
r
i
n
g
E
l
e
c
t
r
i
c
a
l
E
m
b
e
d
d
i
n
g
"
]
O
u
t
[
4
4
5
]
=
I
n
[
4
4
6
]
:
=
c
g
=
m
u
l
t
i
[
"
C
a
u
s
a
l
G
r
a
p
h
"
,
2
,
"
I
n
c
l
u
d
e
I
n
i
t
i
a
l
E
v
e
n
t
"
T
r
u
e
,
A
s
p
e
c
t
R
a
t
i
o
1
/
2
]
O
u
t
[
4
4
6
]
=
Make a combinator multiway system:
Make a function multiway system:
Make a WolframModel multiway system: