Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
Multicomputation
Tech Notes
MultiwaySystem in depth
Symbols
FromLinkedHypergraph
Multi
MultiwaySystem
ToLinkedHypergraph
Wolfram`Multicomputation`
M
u
l
t
i
w
a
y
S
y
s
t
e
m
M
u
l
t
i
w
a
y
S
y
s
t
e
m
[
r
u
l
e
s
,
i
n
i
t
]
c
o
n
s
t
r
u
c
t
a
M
u
l
t
i
w
a
y
S
y
s
t
e
m
o
b
j
e
c
t
f
r
o
m
a
l
i
s
t
o
f
r
u
l
e
s
a
n
d
a
n
i
n
i
t
i
a
l
c
o
n
d
i
t
i
o
n
i
n
i
t
D
e
t
a
i
l
s
a
n
d
O
p
t
i
o
n
s
Examples
(
4
)
Basic Examples
(
4
)
Construct a multiway system with string substitution type:
I
n
[
1
]
:
=
m
u
l
t
i
=
M
u
l
t
i
w
a
y
S
y
s
t
e
m
[
{
"
A
B
"
"
B
A
"
,
"
A
"
"
B
A
"
}
,
{
"
A
A
"
}
]
O
u
t
[
1
]
=
M
u
l
t
i
w
a
y
S
y
s
t
e
m
T
y
p
e
:
S
t
r
i
n
g
List its properties:
I
n
[
2
]
:
=
m
u
l
t
i
[
"
P
r
o
p
e
r
t
i
e
s
"
]
O
u
t
[
2
]
=
{
A
l
l
S
t
a
t
e
s
B
r
a
n
c
h
i
a
l
G
r
a
p
h
,
B
r
a
n
c
h
i
a
l
G
r
a
p
h
,
C
a
u
s
a
l
B
r
a
n
c
h
i
a
l
G
r
a
p
h
,
C
a
u
s
a
l
E
v
o
l
u
t
i
o
n
G
r
a
p
h
,
C
a
u
s
a
l
G
r
a
p
h
,
C
a
u
s
a
l
S
t
a
t
e
s
G
r
a
p
h
,
E
v
o
l
u
t
i
o
n
C
a
u
s
a
l
G
r
a
p
h
,
E
v
o
l
u
t
i
o
n
E
v
e
n
t
s
G
r
a
p
h
,
E
v
o
l
u
t
i
o
n
G
r
a
p
h
,
G
r
a
p
h
,
M
u
l
t
i
,
P
r
o
p
e
r
t
i
e
s
,
S
t
a
t
e
s
G
r
a
p
h
,
T
o
k
e
n
E
v
e
n
t
G
r
a
p
h
,
T
y
p
e
}
Make a graph showing evolution between states:
I
n
[
3
]
:
=
m
u
l
t
i
[
"
S
t
a
t
e
s
G
r
a
p
h
"
,
3
]
O
u
t
[
3
]
=
Make a causal graph showing dependencies between string rewriting events:
I
n
[
4
]
:
=
m
u
l
t
i
[
"
C
a
u
s
a
l
G
r
a
p
h
"
,
3
,
"
I
n
c
l
u
d
e
I
n
i
t
i
a
l
E
v
e
n
t
"
T
r
u
e
]
O
u
t
[
4
]
=
Ignore all event information except its input and output:
I
n
[
5
]
:
=
m
u
l
t
i
[
"
C
a
u
s
a
l
G
r
a
p
h
"
,
3
,
"
I
n
c
l
u
d
e
I
n
i
t
i
a
l
E
v
e
n
t
"
T
r
u
e
,
"
C
a
n
o
n
i
c
a
l
E
v
e
n
t
F
u
n
c
t
i
o
n
"
F
u
l
l
]
O
u
t
[
5
]
=
Make a branchial graph at a specific computation step:
I
n
[
6
]
:
=
m
u
l
t
i
[
"
B
r
a
n
c
h
i
a
l
G
r
a
p
h
"
,
3
]
O
u
t
[
6
]
=
Make a branchial graph for all computation steps:
I
n
[
7
]
:
=
m
u
l
t
i
[
"
A
l
l
S
t
a
t
e
s
B
r
a
n
c
h
i
a
l
G
r
a
p
h
"
,
3
]
O
u
t
[
7
]
=
Make bipartite graphs with both states and events:
I
n
[
8
]
:
=
m
u
l
t
i
[
"
E
v
o
l
u
t
i
o
n
E
v
e
n
t
s
G
r
a
p
h
"
,
2
]
O
u
t
[
8
]
=
I
n
[
9
]
:
=
m
u
l
t
i
[
"
E
v
o
l
u
t
i
o
n
C
a
u
s
a
l
G
r
a
p
h
"
,
2
,
"
I
n
c
l
u
d
e
I
n
i
t
i
a
l
E
v
e
n
t
"
F
a
l
s
e
]
O
u
t
[
9
]
=
Make a causal graph with branchial edges showing branch-like separation:
I
n
[
1
0
]
:
=
m
u
l
t
i
[
"
C
a
u
s
a
l
B
r
a
n
c
h
i
a
l
G
r
a
p
h
"
,
2
,
"
I
n
c
l
u
d
e
I
n
i
t
i
a
l
E
v
e
n
t
"
T
r
u
e
]
O
u
t
[
1
0
]
=
Make a multiway system for an arbitrary expression rewriting:
Make a multiway system for expression rewriting with sub-values:
Make a canonical hypergraph rewriting multiway system: