Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
Lambda
Guides
Guide
Symbols
BetaReduce
BetaReductions
ColorizeLambda
EnumerateLambdas
EtaReduce
EvalLambda
FunctionLambda
LambdaCombinator
LambdaDiagram
LambdaFunction
LambdaSmiles
LambdaTree
RandomLambda
Wolfram`Lambda`
E
n
u
m
e
r
a
t
e
L
a
m
b
d
a
s
E
n
u
m
e
r
a
t
e
L
a
m
b
d
a
s
[
d
e
p
t
h
,
l
e
n
g
t
h
]
e
n
u
m
e
r
a
t
e
a
l
l
l
a
m
b
d
a
e
x
p
r
e
s
s
i
o
n
s
u
p
-
t
o
g
i
v
e
n
d
e
p
t
h
a
n
d
l
e
n
g
t
h
.
Examples
(
1
)
Basic Examples
(
1
)
Enumerate all lambda expression up-to depth 2 and length 2:
I
n
[
1
]
:
=
E
n
u
m
e
r
a
t
e
L
a
m
b
d
a
s
[
2
,
2
]
O
u
t
[
1
]
=
{
λ
.
[
1
]
,
λ
.
[
λ
.
[
1
]
]
,
λ
.
[
λ
.
[
2
]
]
,
λ
.
[
λ
.
[
1
[
1
]
]
]
,
λ
.
[
λ
.
[
1
[
2
]
]
]
,
λ
.
[
λ
.
[
2
[
1
]
]
]
,
λ
.
[
λ
.
[
2
[
2
]
]
]
,
λ
.
[
1
[
1
]
]
,
λ
.
[
1
[
λ
.
[
1
]
]
]
,
λ
.
[
1
[
λ
.
[
2
]
]
]
,
λ
.
[
1
[
λ
.
[
1
[
1
]
]
]
]
,
λ
.
[
1
[
λ
.
[
1
[
2
]
]
]
]
,
λ
.
[
1
[
λ
.
[
2
[
1
]
]
]
]
,
λ
.
[
1
[
λ
.
[
2
[
2
]
]
]
]
,
λ
.
[
λ
.
[
1
]
[
1
]
]
,
λ
.
[
λ
.
[
1
]
[
λ
.
[
1
]
]
]
,
λ
.
[
λ
.
[
1
]
[
λ
.
[
2
]
]
]
,
λ
.
[
λ
.
[
1
]
[
λ
.
[
1
[
1
]
]
]
]
,
λ
.
[
λ
.
[
1
]
[
λ
.
[
1
[
2
]
]
]
]
,
λ
.
[
λ
.
[
1
]
[
λ
.
[
2
[
1
]
]
]
]
,
λ
.
[
λ
.
[
1
]
[
λ
.
[
2
[
2
]
]
]
]
,
λ
.
[
λ
.
[
2
]
[
1
]
]
,
λ
.
[
λ
.
[
2
]
[
λ
.
[
1
]
]
]
,
λ
.
[
λ
.
[
2
]
[
λ
.
[
2
]
]
]
,
λ
.
[
λ
.
[
2
]
[
λ
.
[
1
[
1
]
]
]
]
,
λ
.
[
λ
.
[
2
]
[
λ
.
[
1
[
2
]
]
]
]
,
λ
.
[
λ
.
[
2
]
[
λ
.
[
2
[
1
]
]
]
]
,
λ
.
[
λ
.
[
2
]
[
λ
.
[
2
[
2
]
]
]
]
,
λ
.
[
λ
.
[
1
[
1
]
]
[
1
]
]
,
λ
.
[
λ
.
[
1
[
1
]
]
[
λ
.
[
1
]
]
]
,
λ
.
[
λ
.
[
1
[
1
]
]
[
λ
.
[
2
]
]
]
,
λ
.
[
λ
.
[
1
[
1
]
]
[
λ
.
[
1
[
1
]
]
]
]
,
λ
.
[
λ
.
[
1
[
1
]
]
[
λ
.
[
1
[
2
]
]
]
]
,
λ
.
[
λ
.
[
1
[
1
]
]
[
λ
.
[
2
[
1
]
]
]
]
,
λ
.
[
λ
.
[
1
[
1
]
]
[
λ
.
[
2
[
2
]
]
]
]
,
λ
.
[
λ
.
[
1
[
2
]
]
[
1
]
]
,
λ
.
[
λ
.
[
1
[
2
]
]
[
λ
.
[
1
]
]
]
,
λ
.
[
λ
.
[
1
[
2
]
]
[
λ
.
[
2
]
]
]
,
λ
.
[
λ
.
[
1
[
2
]
]
[
λ
.
[
1
[
1
]
]
]
]
,
λ
.
[
λ
.
[
1
[
2
]
]
[
λ
.
[
1
[
2
]
]
]
]
,
λ
.
[
λ
.
[
1
[
2
]
]
[
λ
.
[
2
[
1
]
]
]
]
,
λ
.
[
λ
.
[
1
[
2
]
]
[
λ
.
[
2
[
2
]
]
]
]
,
λ
.
[
λ
.
[
2
[
1
]
]
[
1
]
]
,
λ
.
[
λ
.
[
2
[
1
]
]
[
λ
.
[
1
]
]
]
,
λ
.
[
λ
.
[
2
[
1
]
]
[
λ
.
[
2
]
]
]
,
λ
.
[
λ
.
[
2
[
1
]
]
[
λ
.
[
1
[
1
]
]
]
]
,
λ
.
[
λ
.
[
2
[
1
]
]
[
λ
.
[
1
[
2
]
]
]
]
,
λ
.
[
λ
.
[
2
[
1
]
]
[
λ
.
[
2
[
1
]
]
]
]
,
λ
.
[
λ
.
[
2
[
1
]
]
[
λ
.
[
2
[
2
]
]
]
]
,
λ
.
[
λ
.
[
2
[
2
]
]
[
1
]
]
,
λ
.
[
λ
.
[
2
[
2
]
]
[
λ
.
[
1
]
]
]
,
λ
.
[
λ
.
[
2
[
2
]
]
[
λ
.
[
2
]
]
]
,
λ
.
[
λ
.
[
2
[
2
]
]
[
λ
.
[
1
[
1
]
]
]
]
,
λ
.
[
λ
.
[
2
[
2
]
]
[
λ
.
[
1
[
2
]
]
]
]
,
λ
.
[
λ
.
[
2
[
2
]
]
[
λ
.
[
2
[
1
]
]
]
]
,
λ
.
[
λ
.
[
2
[
2
]
]
[
λ
.
[
2
[
2
]
]
]
]
}
S
e
e
A
l
s
o
R
a
n
d
o
m
L
a
m
b
d
a
R
e
l
a
t
e
d
G
u
i
d
e
s
▪
G
u
i
d
e
"
"