Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
Lambda
Guides
Guide
Symbols
BetaReduce
BetaReductions
ColorizeLambda
EnumerateLambdas
EtaReduce
EvalLambda
FunctionLambda
LambdaCombinator
LambdaDiagram
LambdaFunction
LambdaSmiles
LambdaTree
RandomLambda
Wolfram`Lambda`
B
e
t
a
R
e
d
u
c
t
i
o
n
s
B
e
t
a
R
e
d
u
c
t
i
o
n
s
[
l
a
m
b
d
a
]
r
e
t
u
r
n
a
l
l
p
o
s
s
i
b
l
e
β
-
r
e
d
u
c
t
i
o
n
s
o
f
t
h
e
l
a
m
b
d
a
e
x
p
r
e
s
s
i
o
n
.
Examples
(
3
)
Basic Examples
(
1
)
Compute all possible
β
-reductions of a random lambda expression:
I
n
[
1
]
:
=
B
e
t
a
R
e
d
u
c
t
i
o
n
s
R
a
n
d
o
m
L
a
m
b
d
a
[
3
,
3
]
O
u
t
[
1
]
=
{
λ
.
[
λ
.
[
2
]
[
λ
.
[
2
]
]
[
λ
.
[
2
[
1
]
]
]
]
,
λ
.
[
λ
.
[
2
[
λ
.
[
3
[
1
]
]
]
]
[
λ
.
[
λ
.
[
3
[
3
]
[
1
]
]
[
λ
.
[
3
[
1
]
[
3
]
]
]
[
λ
.
[
2
[
1
]
[
1
]
]
]
]
]
]
,
λ
.
[
λ
.
[
λ
.
[
3
]
[
λ
.
[
3
]
]
[
λ
.
[
3
[
1
]
]
]
]
[
λ
.
[
2
[
2
]
[
λ
.
[
3
[
1
]
[
3
]
]
]
[
λ
.
[
2
[
1
]
[
1
]
]
]
]
]
]
}
N
e
a
t
E
x
a
m
p
l
e
s
(
2
)
"
"