Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

UndirectedGraphs

Guides

  • GraphConstructionandRepresentation
  • Graph Functions
  • GraphOperationsandModifications
  • GraphPropertiesAndMeasurements
  • GraphVisualization
  • Paths, Cycles, and Flows
  • Computation on Graphs

Symbols

  • AlternatingTreeGraph
  • BananaTreeGraph
  • BookGraph
  • CoboundaryPolynomial
  • CombGraph
  • FirecrackerGraph
  • GearGraph
  • GeneralizedTriangularGridGraph
  • Girth
  • GraphicalDegreeSequenceQ
  • HelmGraph
  • IndependencePolynomial
  • KayakPaddleGraph
  • LadderRungGraph
  • PanGraph
  • PositiveIntegerQ
  • RankPolynomial
  • ReliabilityPolynomial
  • ResistanceMatrix
  • SunletGraph
  • TadpoleGraph
  • VertexCoordinateList
  • VertexInsert
PeterBurbery`UndirectedGraphs`
ReliabilityPolynomial
​
ReliabilityPolynomial
[graph]
gives the reliability polynomial of
graph
.
​
​
ReliabilityPolynomial
[graph,indeterminate]
gives the reliability polynomial of
graph
with the indeterminate
indeterminate
.
​
Details and Options

Examples  
(1)
Basic Examples  
(1)
Compute the reliability polynomial for the Petersen graph:
In[1]:=
ReliabilityPolynomial
[PetersenGraph[]]
Out[1]=
-
9
(-1+p.)
1+9p.+45
2
p.
+155
3
p.
+390
4
p.
+696
5
p.
+704
6
p.

Compute the reliability polynomial for the Pappus graph:
In[2]:=
ReliabilityPolynomial
[GraphData["PappusGraph"]]
Out[2]=
-
17
(-1+p.)
1+17p.+153
2
p.
+951
3
p.
+4512
4
p.
+17136
5
p.
+53238
6
p.
+135555
7
p.
+276147
8
p.
+415493
9
p.
+356509
10
p.

Compute the reliability polynomial over the indeterminate ℓ:
In[3]:=
ReliabilityPolynomial
[GraphData["PappusGraph"],ℓ]
Out[3]=
-
17
(-1+ℓ)
(1+17ℓ+153
2
ℓ
+951
3
ℓ
+4512
4
ℓ
+17136
5
ℓ
+53238
6
ℓ
+135555
7
ℓ
+276147
8
ℓ
+415493
9
ℓ
+356509
10
ℓ
)
Make two tests to compare this function to GraphData.
In[4]:=
tests=TableWithinput=input,output=FullSimplify[GraphData[input,"ReliabilityPolynomial"][p.]],​​TestCreateFullSimplify@
ReliabilityPolynomial
[GraphData[input]],output,TestIDAutomatic,{input,{"PetersenGraph","PappusGraph"}}
Out[4]=
TestObject
Outcome: NotEvaluated
Test ID:
6614f6c5-1c35-4ebd-a05d-7768144c0c80
,TestObject
Outcome: NotEvaluated
Test ID:
a53faf8d-c65c-420c-a989-d0abf3842e73

Run the tests:
In[5]:=
TestReport[tests]
Out[5]=
TestReportObject
Tests count: 2
Success rate:
100%

Echo the outputs of the tests:
In[6]:=
TestReport[tests,HandlerFunctions"TestEvaluated"Echo]
»
EventTestEvaluated,EventIDf039b039-eaf9-4de5-b521-16b5be1744c7,TestObjectTestObject
Outcome: Success
Test ID:
6614f6c5-1c35-4ebd-a05d-7768144c0c80
,OutcomeSuccess
»
EventTestEvaluated,EventIDf1bae610-adb0-4085-96c8-2642d030bd75,TestObjectTestObject
Outcome: Success
Test ID:
a53faf8d-c65c-420c-a989-d0abf3842e73
,OutcomeSuccess
Out[6]=
TestReportObject
Tests count: 2
Success rate:
100%

SeeAlso
TuttePolynomial
 
▪
RankPolynomial
RelatedGuides
▪
Computation on Graphs
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com