Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

UndirectedGraphs

Guides

  • GraphConstructionandRepresentation
  • Graph Functions
  • GraphOperationsandModifications
  • GraphPropertiesAndMeasurements
  • GraphVisualization
  • Paths, Cycles, and Flows
  • Computation on Graphs

Symbols

  • AlternatingTreeGraph
  • BananaTreeGraph
  • BookGraph
  • CoboundaryPolynomial
  • CombGraph
  • FirecrackerGraph
  • GearGraph
  • GeneralizedTriangularGridGraph
  • Girth
  • GraphicalDegreeSequenceQ
  • HelmGraph
  • IndependencePolynomial
  • KayakPaddleGraph
  • LadderRungGraph
  • PanGraph
  • PositiveIntegerQ
  • RankPolynomial
  • ReliabilityPolynomial
  • ResistanceMatrix
  • SunletGraph
  • TadpoleGraph
  • VertexCoordinateList
  • VertexInsert
PeterBurbery`UndirectedGraphs`
CoboundaryPolynomial
​
CoboundaryPolynomial
[graph]
returns the coboundary polynomial of
graph
.
​
​
CoboundaryPolynomial
[graph,{
indeterminate
1
,
indeterminate
2
}]
returns the bivariate coboundary polynomial of
graph
with the indeterminates
indeterminate
i
.
​
Details and Options

Examples  
(1)
Basic Examples  
(1)
Obtain the coboundary polynomial of the Petersen graph:
In[1]:=
CoboundaryPolynomial
[PetersenGraph[]]
Out[1]=
-704+2606q.-4305
2
q.
+4275
3
q.
-2861
4
q.
+1353
5
q.
-455
6
q.
+105
7
q.
-15
8
q.
+
9
q.
+5640t.-19350q.t.+28845
2
q.
t.-25080
3
q.
t.+14175
4
q.
t.-5400
5
q.
t.+1365
6
q.
t.-210
7
q.
t.+15
8
q.
t.-19470
2
t.
+61455q.
2
t.
-81570
2
q.
2
t.
+60735
3
q.
2
t.
-27960
4
q.
2
t.
+8070
5
q.
2
t.
-1365
6
q.
2
t.
+105
7
q.
2
t.
+37435
3
t.
-107665q.
3
t.
+124935
2
q.
3
t.
-77130
3
q.
3
t.
+27310
4
q.
3
t.
-5340
5
q.
3
t.
+455
6
q.
3
t.
-42930
4
t.
+110970q.
4
t.
-109515
2
q.
4
t.
+53175
3
q.
4
t.
-13005
4
q.
4
t.
+1305
5
q.
4
t.
+28584
5
t.
-64872q.
5
t.
+51765
2
q.
5
t.
-17700
3
q.
5
t.
+2211
4
q.
5
t.
+12
5
q.
5
t.
-9100
6
t.
+17010q.
6
t.
-9345
2
q.
6
t.
+1305
3
q.
6
t.
+130
4
q.
6
t.
-45
7
t.
+810q.
7
t.
-1155
2
q.
7
t.
+390
3
q.
7
t.
+540
8
t.
-810q.
8
t.
+240
2
q.
8
t.
+30
3
q.
8
t.
+80
9
t.
-170q.
9
t.
+90
2
q.
9
t.
-6
10
t.
-9q.
10
t.
+15
2
q.
10
t.
-15
11
t.
+15q.
11
t.
-10
12
t.
+10q.
12
t.
+
15
t.
The coboundary polynomial for the Pappus graph:
In[2]:=
FullSimplify@
CoboundaryPolynomial
[GraphData["PappusGraph"]]
Out[2]=
17
q.
+27
16
q.
(-1+t.)+351
15
q.
2
(-1+t.)
+2925
14
q.
3
(-1+t.)
+17550
13
q.
4
(-1+t.)
+18
12
q.
5
(-1+t.)
(4484+t.)+18
11
q.
6
(-1+t.)
(16423+21t.)+54
10
q.
7
(-1+t.)
(16367+71t.)+9
9
q.
8
(-1+t.)
243481+2762t.+6
2
t.
+3
8
q.
9
(-1+t.)
(1515361+72t.(531+5t.))+27
7
q.
10
(-1+t.)
(293078+t.(14680+t.(363+4t.)))+9
6
q.
11
(-1+t.)
(1279368+t.(116766+t.(5952+t.(193+2t.))))+9
5
q.
12
(-1+t.)
(1538744+t.(239160+t.(21795+t.(1411+48t.))))+9
4
q.
13
(-1+t.)
(1497305+t.(375278+t.(55817+t.(6119+t.(437+14t.)))))+3
3
q.
14
(-1+t.)
(3408683+t.(1317787+2t.(150459+t.(25562+t.(3136+9t.(27+t.))))))+3
2
q.
15
(-1+t.)
(1893160+t.(1088349+t.(365556+t.(91316+3t.(5793+t.(798+t.(71+3t.)))))))+9q.
16
(-1+t.)
(227435+t.(188582+t.(90245+t.(32019+t.(8925+t.(1944+t.(317+t.(35+2t.))))))))+
17
(-1+t.)
(356509+t.(415493+t.(276147+t.(135555+t.(53238+t.(17136+t.(4512+t.(951+t.(153+t.(17+t.))))))))))
Verify these are the same as GraphData's coboundary polynomials.
Make two tests, one for the Petersen graph and one for the Pappus graph by comparing the output of GraphData with "CoboundaryPolynomial" to the output from CoboundaryPolynomial, then applying FullSimplify:
In[3]:=
tests=TableWithinput=input,output=FullSimplify[GraphData[input,"CoboundaryPolynomial"][q.,t.]],​​TestCreateFullSimplify@
CoboundaryPolynomial
[GraphData[input]],output,TestIDAutomatic,{input,{"PetersenGraph","PappusGraph"}}
Out[3]=
Run the tests:
In[4]:=
TestReport[tests]
Out[4]=
TestReportObject
Tests count: 2
Success rate:
100%

Echo the outputs of the tests:
In[5]:=
TestReport[tests,HandlerFunctions"TestEvaluated"Echo]
»
EventTestEvaluated,EventID2f07d821-3b8e-4654-8b1f-fe218794329e,TestObjectTestObject
Outcome: Success
Test ID:
4d145db5-ae73-4bd4-b67c-837c14cb7ea6
,OutcomeSuccess
»
Out[5]=
TestReportObject
Tests count: 2
Success rate:
100%

SeeAlso
ReliabilityPolynomial
RelatedGuides
▪
Computation on Graphs
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com