Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
MixedGraphs
Guides
Mixed Graph Functions
Symbols
EulerizeGraph
EvenDegreeVertexList
EvenDegreeVertexQ
GeneralizedGraphData
GraphConvexHull
GraphicalDegreeSequenceQ
GraphInformation
MixedGraphDirectedArcs
MixedGraphToDigraph
MixedGraphUndirectedEdges
OddDegreeVertexList
OddDegreeVertexQ
OddNodes
RandomMixedGraph
RandomSymbolicMixedGraph
RandomSymbolicWeightedMixedGraph
RandomWeightedMixedGraph
TakeLargestGraphComponentBy
UndirectedGraphToMixedGraph
PeterBurbery`MixedGraphs`
O
d
d
D
e
g
r
e
e
V
e
r
t
e
x
L
i
s
t
O
d
d
D
e
g
r
e
e
V
e
r
t
e
x
L
i
s
t
[
g
]
g
i
v
e
s
t
h
e
v
e
r
t
e
x
e
s
i
n
t
h
e
g
r
a
p
h
g
w
i
t
h
o
d
d
d
e
g
r
e
e
Examples
(
1
)
Basic Examples
(
1
)
Do the computation for the odd degree vertices in a graph:
I
n
[
1
]
:
=
O
d
d
D
e
g
r
e
e
V
e
r
t
e
x
L
i
s
t
[
G
r
i
d
G
r
a
p
h
[
{
1
2
,
1
2
}
]
]
O
u
t
[
1
]
=
{
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
1
0
,
1
1
,
1
3
,
2
4
,
2
5
,
3
6
,
3
7
,
4
8
,
4
9
,
6
0
,
6
1
,
7
2
,
7
3
,
8
4
,
8
5
,
9
6
,
9
7
,
1
0
8
,
1
0
9
,
1
2
0
,
1
2
1
,
1
3
2
,
1
3
4
,
1
3
5
,
1
3
6
,
1
3
7
,
1
3
8
,
1
3
9
,
1
4
0
,
1
4
1
,
1
4
2
,
1
4
3
}
Highlight the odd degree vertices:
I
n
[
2
]
:
=
H
i
g
h
l
i
g
h
t
G
r
a
p
h
G
r
i
d
G
r
a
p
h
[
{
1
2
,
1
2
}
]
,
O
d
d
D
e
g
r
e
e
V
e
r
t
e
x
L
i
s
t
[
G
r
i
d
G
r
a
p
h
[
{
1
2
,
1
2
}
]
]
O
u
t
[
2
]
=
S
e
e
A
l
s
o
"
X
X
X
X
"
"
"