Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

MixedGraphs

Guides

  • Mixed Graph Functions

Symbols

  • EulerizeGraph
  • EvenDegreeVertexList
  • EvenDegreeVertexQ
  • GeneralizedGraphData
  • GraphConvexHull
  • GraphicalDegreeSequenceQ
  • GraphInformation
  • MixedGraphDirectedArcs
  • MixedGraphToDigraph
  • MixedGraphUndirectedEdges
  • OddDegreeVertexList
  • OddDegreeVertexQ
  • OddNodes
  • RandomMixedGraph
  • RandomSymbolicMixedGraph
  • RandomSymbolicWeightedMixedGraph
  • RandomWeightedMixedGraph
  • TakeLargestGraphComponentBy
  • UndirectedGraphToMixedGraph
PeterBurbery`MixedGraphs`
EvenDegreeVertexQ
​
EvenDegreeVertexQ
[g,v]
evaluates to
True
if the vertex
v
in the graph
g
has even degree
​
Examples  
(1)
Basic Examples  
(1)
Determine if a graph vertex is even:
In[1]:=
EvenDegreeVertexQ
[GridGraph[{3,3}],7]
Out[1]=
True
Highlight the vertex and the incident edges:
In[2]:=
HighlightGraph[GridGraph[{3,3}],Join[{7},IncidenceList[GridGraph[{3,3}],7]]]
Out[2]=
SeeAlso
"XXXX"
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com