Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
AssociationFunctions
Guides
Association Functions
Symbols
LinearOptimizationInformation
QuadraticOptimizationInformation
PeterBurbery`AssociationFunctions`
Q
u
a
d
r
a
t
i
c
O
p
t
i
m
i
z
a
t
i
o
n
I
n
f
o
r
m
a
t
i
o
n
Q
u
a
d
r
a
t
i
c
O
p
t
i
m
i
z
a
t
i
o
n
I
n
f
o
r
m
a
t
i
o
n
[
f
,
c
o
n
s
,
v
a
r
s
]
f
i
n
d
s
o
p
t
i
m
i
z
a
t
i
o
n
q
u
a
d
r
a
t
i
c
o
f
v
a
r
i
a
b
l
e
s
v
a
r
s
t
h
a
t
m
i
n
i
m
i
z
e
t
h
e
q
u
a
d
r
a
t
i
c
o
b
j
e
c
t
i
v
e
f
s
u
b
j
e
c
t
t
o
l
i
n
e
a
r
c
o
n
s
t
r
a
i
n
t
s
c
o
n
s
.
Examples
(
1
)
Basic Examples
(
1
)
I
n
[
1
]
:
=
o
b
j
=
2
2
x
+
2
0
2
y
+
6
x
y
+
5
x
;
I
n
[
2
]
:
=
Q
u
a
d
r
a
t
i
c
O
p
t
i
m
i
z
a
t
i
o
n
I
n
f
o
r
m
a
t
i
o
n
[
o
b
j
,
-
x
+
y
≥
2
,
{
x
,
y
}
]
O
u
t
[
2
]
=
P
r
i
m
a
l
M
i
n
i
m
i
z
e
r
{
-
1
.
7
3
2
1
4
,
0
.
2
6
7
8
5
7
}
,
P
r
i
m
a
l
M
i
n
i
m
i
z
e
r
R
u
l
e
s
{
x
-
1
.
7
3
2
1
4
,
y
0
.
2
6
7
8
5
7
}
,
P
r
i
m
a
l
M
i
n
i
m
i
z
e
r
V
e
c
t
o
r
{
-
1
.
7
3
2
1
4
,
0
.
2
6
7
8
5
7
}
,
P
r
i
m
a
l
M
i
n
i
m
u
m
V
a
l
u
e
-
4
.
0
0
8
9
3
,
D
u
a
l
M
a
x
i
m
i
z
e
r
{
{
1
.
7
3
2
1
4
,
-
0
.
2
6
7
8
5
7
}
,
{
0
.
3
2
1
4
2
9
}
,
{
}
}
,
D
u
a
l
M
a
x
i
m
u
m
V
a
l
u
e
-
4
.
0
0
8
9
3
,
D
u
a
l
i
t
y
G
a
p
1
.
3
3
6
9
4
×
-
8
1
0
,
S
l
a
c
k
{
{
4
.
1
5
9
3
8
×
-
8
1
0
}
,
{
}
}
,
C
o
n
s
t
r
a
i
n
t
S
e
n
s
i
t
i
v
i
t
y
{
{
-
0
.
3
2
1
4
2
9
}
,
{
}
}
,
O
b
j
e
c
t
i
v
e
M
a
t
r
i
x
{
{
4
.
,
6
.
}
,
{
6
.
,
4
0
.
}
}
,
O
b
j
e
c
t
i
v
e
V
e
c
t
o
r
{
5
.
,
0
.
}
,
F
a
c
t
o
r
e
d
O
b
j
e
c
t
i
v
e
M
a
t
r
i
x
M
i
s
s
i
n
g
[
N
o
t
A
v
a
i
l
a
b
l
e
]
,
F
a
c
t
o
r
e
d
O
b
j
e
c
t
i
v
e
V
e
c
t
o
r
M
i
s
s
i
n
g
[
N
o
t
A
v
a
i
l
a
b
l
e
]
,
L
i
n
e
a
r
I
n
e
q
u
a
l
i
t
y
C
o
n
s
t
r
a
i
n
t
s
S
p
a
r
s
e
A
r
r
a
y
S
p
e
c
i
f
i
e
d
e
l
e
m
e
n
t
s
:
2
D
i
m
e
n
s
i
o
n
s
:
{
1
,
2
}
,
{
-
2
.
}
,
L
i
n
e
a
r
E
q
u
a
l
i
t
y
C
o
n
s
t
r
a
i
n
t
s
{
}
S
e
e
A
l
s
o
Examples Initialization
N
e
e
d
s
[
"
P
e
t
e
r
B
u
r
b
e
r
y
`
A
s
s
o
c
i
a
t
i
o
n
F
u
n
c
t
i
o
n
s
`
"
]
Metadata
"
"