Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

AssociationFunctions

Guides

  • Association Functions

Symbols

  • LinearOptimizationInformation
  • QuadraticOptimizationInformation
PeterBurbery`AssociationFunctions`
LinearOptimizationInformation
​
​
LinearOptimizationInformation[f,cons,vars]
finds linear optimization information given variables
vars
that minimize the linear objective
f
subject to linear constraints
cons
.
​
Examples  
(1)
Basic Examples  
(1)
In[1]:=
LinearOptimizationInformation
[x+y,{x+2y≥3,x≥0,y≥0},{x,y}]
Out[1]=
PrimalMinimizer0,
3
2
,PrimalMinimizerRulesx0,y
3
2
,PrimalMinimizerVector0,
3
2
,PrimalMinimumValue
3
2
,DualMaximizer
1
2
,
1
2
,0,{},DualMaximumValue
3
2
,DualityGap0,Slack0,0,
3
2
,{},ConstraintSensitivity-
1
2
,-
1
2
,0,{},ObjectiveVector{1,1},LinearInequalityConstraintsSparseArray
Specified elements: 4
Dimensions: {3,2}
,{-3,0,0},LinearEqualityConstraints{}
SeeAlso
Examples Initialization
Needs["PeterBurbery`AssociationFunctions`"]
Metadata
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com