Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

XGBPaclet

Guides

  • XGBPaclet Guide

Tech Notes

  • XGBPaclet Functionality

Symbols

  • XgbModelPredict
  • XgbMeasurement
  • XgbMeasurement
  • XgbTrain
MikeYeh`XGBPaclet`
XgbMeasurement
​
XgbMeasurement[python_session,testdata,model_name_or_file_name]
XgbModelPredict[] use the given xgboost session, and the given model name or the file_name for loading model to predict the test data.
​
Details and Options

Examples  
(4)
Basic Examples  
(4)
Create a XGBoost Python session  
(1)
A XGBoost python session is required before using XgbModelPredict[].
The following code shows how to create a XGBoost python session:
In[1]:=
[◼]
RegisterEnvironment
["xgb"{"xgboost"}]
Out[1]=
xgb
In[2]:=
session=
[◼]
StartEnvironment
["xgb"];​​ExternalEvaluate[session,"import xgboost as xgb"];
The last line of code is to import XGBoost package in our python session.
​
Prepare dataset for the following examples  
(1)

The example of minimum usage  
(1)

Load model by file name and use the loaded model for prediction  
(1)

SeeAlso
XgbTrain
TechNotes
▪
XGBPaclet Functionality
RelatedGuides
▪
XGBPaclet Guide
RelatedLinks
▪
Training section
▪
Learning API
▪
XGBoost Parameters
▪
Model IO
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com