Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
XGBPaclet
Guides
XGBPaclet Guide
Tech Notes
XGBPaclet Functionality
Symbols
XgbModelPredict
XgbMeasurement
XgbMeasurement
XgbTrain
MikeYeh`XGBPaclet`
X
g
b
M
e
a
s
u
r
e
m
e
n
t
X
g
b
M
e
a
s
u
r
e
m
e
n
t
[
p
y
t
h
o
n
_
s
e
s
s
i
o
n
,
m
o
d
e
l
_
n
a
m
e
_
o
r
_
f
i
l
e
_
n
a
m
e
,
{
d
a
t
a
t
a
r
g
e
t
}
]
X
g
b
M
e
a
s
u
r
e
m
e
n
t
[
]
u
s
e
t
h
e
g
i
v
e
n
x
g
b
o
o
s
t
s
e
s
s
i
o
n
,
a
n
d
t
h
e
g
i
v
e
n
m
o
d
e
l
n
a
m
e
o
r
t
h
e
f
i
l
e
_
n
a
m
e
f
o
r
l
o
a
d
i
n
g
m
o
d
e
l
t
o
p
r
e
d
i
c
t
t
h
e
t
e
s
t
d
a
t
a
a
n
d
e
v
a
l
u
a
t
e
t
h
e
X
g
b
o
o
s
t
m
o
d
e
l
.
T
h
e
t
e
s
t
d
a
t
a
m
u
s
t
b
e
o
f
t
h
e
f
o
r
m
a
t
{
d
a
t
a
-
>
t
a
r
g
e
t
}
X
g
b
M
e
a
s
u
r
e
m
e
n
t
[
p
y
t
h
o
n
_
s
e
s
s
i
o
n
,
{
d
a
t
a
t
a
r
g
e
t
}
]
X
g
b
M
e
a
s
u
r
e
m
e
n
t
[
]
u
s
e
t
h
e
g
i
v
e
n
x
g
b
o
o
s
t
s
e
s
s
i
o
n
t
o
c
a
l
l
t
h
e
d
e
f
a
u
l
t
"
t
e
s
t
m
o
d
e
l
"
t
o
p
r
e
d
i
c
t
t
h
e
t
e
s
t
d
a
t
a
a
n
d
e
v
a
l
u
a
t
e
t
h
e
X
g
b
o
o
s
t
m
o
d
e
l
.
T
h
e
t
e
s
t
d
a
t
a
m
u
s
t
b
e
o
f
t
h
e
f
o
r
m
a
t
{
d
a
t
a
-
>
t
a
r
g
e
t
}
X
g
b
M
e
a
s
u
r
e
m
e
n
t
[
p
y
t
h
o
n
_
s
e
s
s
i
o
n
,
m
o
d
e
l
_
n
a
m
e
_
o
r
_
f
i
l
e
_
n
a
m
e
,
{
d
a
t
a
N
o
n
e
}
]
g
b
M
e
a
s
u
r
e
m
e
n
t
[
]
u
s
e
t
h
e
g
i
v
e
n
x
g
b
o
o
s
t
s
e
s
s
i
o
n
,
a
n
d
t
h
e
g
i
v
e
n
m
o
d
e
l
n
a
m
e
o
r
t
h
e
f
i
l
e
_
n
a
m
e
f
o
r
l
o
a
d
i
n
g
m
o
d
e
l
t
o
p
r
e
d
i
c
t
t
h
e
d
a
t
a
w
i
t
h
n
o
t
a
r
g
e
t
l
a
b
e
l
s
p
r
o
v
i
d
e
d
,
w
h
e
r
e
t
h
e
d
a
t
a
i
s
s
t
i
l
l
i
n
t
h
e
f
o
r
m
a
t
{
d
a
t
a
-
>
N
o
n
e
}
.
D
e
t
a
i
l
s
a
n
d
O
p
t
i
o
n
s
Examples
(
1
4
)
Basic Examples
(
6
)
Create Python sessions
(
2
)
A XGBoost python session is
required
before using XgbMeasurement[].
The following code creates the
xgb
python session with minimum required packages : xgboost, scikit-learn==1.5.2, and matplotlib.
I
n
[
1
]
:
=
[
◼
]
R
e
g
i
s
t
e
r
E
n
v
i
r
o
n
m
e
n
t
[
"
x
g
b
"
{
"
x
g
b
o
o
s
t
"
(
*
w
i
t
h
n
u
m
p
y
*
)
,
"
s
c
i
k
i
t
-
l
e
a
r
n
=
=
1
.
5
.
2
"
,
"
m
a
t
p
l
o
t
l
i
b
"
}
]
O
u
t
[
1
]
=
x
g
b
I
n
[
2
]
:
=
s
e
s
s
i
o
n
=
[
◼
]
S
t
a
r
t
E
n
v
i
r
o
n
m
e
n
t
[
"
x
g
b
"
]
;
Here we create the
xgb2
python session with additional shap package for generate SHAP values and plots.
I
n
[
1
]
:
=
[
◼
]
R
e
g
i
s
t
e
r
E
n
v
i
r
o
n
m
e
n
t
[
"
x
g
b
2
"
{
"
x
g
b
o
o
s
t
"
(
*
w
i
t
h
n
u
m
p
y
*
)
,
"
s
c
i
k
i
t
-
l
e
a
r
n
=
=
1
.
5
.
2
"
,
"
m
a
t
p
l
o
t
l
i
b
"
,
"
s
h
a
p
"
(
*
w
i
t
h
p
a
n
d
a
s
*
)
}
]
O
u
t
[
1
]
=
x
g
b
2
I
n
[
2
]
:
=
s
e
s
s
i
o
n
2
=
[
◼
]
S
t
a
r
t
E
n
v
i
r
o
n
m
e
n
t
[
"
x
g
b
2
"
]
P
r
e
p
a
r
e
d
a
t
a
s
e
t
s
f
o
r
e
x
a
m
p
l
e
s
(
3
)
T
h
e
m
i
n
i
m
u
m
u
s
a
g
e
(
1
)
S
c
o
p
e
(
5
)
A
p
p
l
i
c
a
t
i
o
n
s
(
2
)
P
o
s
s
i
b
l
e
I
s
s
u
e
s
(
1
)
S
e
e
A
l
s
o
X
g
b
T
r
a
i
n
T
e
c
h
N
o
t
e
s
▪
X
G
B
P
a
c
l
e
t
F
u
n
c
t
i
o
n
a
l
i
t
y
R
e
l
a
t
e
d
G
u
i
d
e
s
▪
X
G
B
P
a
c
l
e
t
G
u
i
d
e
R
e
l
a
t
e
d
L
i
n
k
s
▪
T
r
a
i
n
i
n
g
s
e
c
t
i
o
n
▪
L
e
a
r
n
i
n
g
A
P
I
▪
X
G
B
o
o
s
t
P
a
r
a
m
e
t
e
r
s
▪
M
o
d
e
l
I
O
"
"