Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
MatrixDecomposition
Symbols
CMRDecomposition
CRDecomposition
CWBDecomposition
Submatrix
UVTransposeMatrix
UVTranspose
LawrenceWinkler`MatrixDecomposition`
U
V
T
r
a
n
s
p
o
s
e
M
a
t
r
i
x
U
V
T
r
a
n
s
p
o
s
e
M
a
t
r
i
x
[
A
,
B
]
D
e
c
o
m
p
o
s
e
p
r
o
d
u
c
t
o
f
m
x
p
m
a
t
r
i
c
e
s
A
a
n
d
p
x
n
B
i
n
t
o
a
s
e
t
o
f
p
m
x
n
r
a
n
k
1
m
a
t
r
i
c
e
s
D
e
t
a
i
l
s
a
n
d
O
p
t
i
o
n
s
Examples
(
1
)
Basic Examples
(
1
)
I
n
[
1
]
:
=
A
1
=
P
a
r
t
i
t
i
o
n
[
T
a
b
l
e
[
i
,
{
i
,
1
2
}
]
,
4
]
;
A
1
/
/
M
a
t
r
i
x
F
o
r
m
O
u
t
[
1
]
/
/
M
a
t
r
i
x
F
o
r
m
=
1
2
3
4
5
6
7
8
9
1
0
1
1
1
2
I
n
[
2
]
:
=
C
l
e
a
r
[
a
,
b
,
c
,
d
,
e
,
f
,
g
,
h
,
i
,
j
,
k
,
l
]
;
A
2
=
{
{
a
,
b
,
c
,
d
}
,
{
e
,
f
,
g
,
h
}
,
{
i
,
j
,
k
,
l
}
}
;
A
2
=
T
r
a
n
s
p
o
s
e
[
A
2
]
;
A
2
/
/
M
a
t
r
i
x
F
o
r
m
O
u
t
[
2
]
/
/
M
a
t
r
i
x
F
o
r
m
=
a
e
i
b
f
j
c
g
k
d
h
l
I
n
[
3
]
:
=
(
*
N
o
r
m
a
l
m
a
t
r
i
x
p
r
o
d
u
c
t
*
)
A
1
.
A
2
/
/
M
a
t
r
i
x
F
o
r
m
O
u
t
[
3
]
/
/
M
a
t
r
i
x
F
o
r
m
=
a
+
2
b
+
3
c
+
4
d
e
+
2
f
+
3
g
+
4
h
i
+
2
j
+
3
k
+
4
l
5
a
+
6
b
+
7
c
+
8
d
5
e
+
6
f
+
7
g
+
8
h
5
i
+
6
j
+
7
k
+
8
l
9
a
+
1
0
b
+
1
1
c
+
1
2
d
9
e
+
1
0
f
+
1
1
g
+
1
2
h
9
i
+
1
0
j
+
1
1
k
+
1
2
l
I
n
[
4
]
:
=
(
*
A
1
.
A
2
a
s
s
u
m
o
f
r
a
n
k
1
m
a
t
r
i
c
e
s
*
)
r
a
n
k
1
=
U
V
T
r
a
n
s
p
o
s
e
M
a
t
r
i
x
[
A
1
,
A
2
]
;
M
a
t
r
i
x
F
o
r
m
[
#
]
&
/
@
r
a
n
k
1
O
u
t
[
4
]
=
a
e
i
5
a
5
e
5
i
9
a
9
e
9
i
,
2
b
2
f
2
j
6
b
6
f
6
j
1
0
b
1
0
f
1
0
j
,
3
c
3
g
3
k
7
c
7
g
7
k
1
1
c
1
1
g
1
1
k
,
4
d
4
h
4
l
8
d
8
h
8
l
1
2
d
1
2
h
1
2
l
I
n
[
5
]
:
=
P
l
u
s
@
@
r
a
n
k
1
/
/
M
a
t
r
i
x
F
o
r
m
O
u
t
[
5
]
/
/
M
a
t
r
i
x
F
o
r
m
=
a
+
2
b
+
3
c
+
4
d
e
+
2
f
+
3
g
+
4
h
i
+
2
j
+
3
k
+
4
l
5
a
+
6
b
+
7
c
+
8
d
5
e
+
6
f
+
7
g
+
8
h
5
i
+
6
j
+
7
k
+
8
l
9
a
+
1
0
b
+
1
1
c
+
1
2
d
9
e
+
1
0
f
+
1
1
g
+
1
2
h
9
i
+
1
0
j
+
1
1
k
+
1
2
l
S
e
e
A
l
s
o
"
X
X
X
X
"
"
"