Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

MatrixDecomposition

Symbols

  • CMRDecomposition
  • CRDecomposition
  • CWBDecomposition
  • Submatrix
  • UVTransposeMatrix
  • UVTranspose
LawrenceWinkler`MatrixDecomposition`
CMRDecomposition
​
CMRDecomposition[mat]
{c,m,r} = CMRDecomposition[
mat
}; decompose the matrix
mat
into C, M, and R matrices such that CMR = A
​
Details and Options

Examples  
(1)
Basic Examples  
(1)
In[1]:=
Needs["LawrenceWinkler`MatrixDecomposition`"];​​Clear[A1,c,r,m];​​(*A1isa3x4,rank2matrix*)​​A1={{1,2,3,4},{5,6,7,8},{9,10,11,12}};​​A1//MatrixForm​​{c,m,r}=
CMRDecomposition
[A1];​​MatrixForm[#]&/@{c,m,r}
Out[1]//MatrixForm=
1
2
3
4
5
6
7
8
9
10
11
12
Out[1]=

1
2
5
6
9
10
,
-
3
2
1
2
5
4
-
1
4
,
1
2
3
4
5
6
7
8

SeeAlso
RowReduce
 
▪
MatrixRank
 
▪
LUDecomposition
 
▪
QRDecomposition
 
▪
Transpose
RelatedLinks
Gilbert Strang, Linear Algebra for Everyone
https://math.mit.edu/~gs/everyone/lucrweb.pdf
https://blogs.mathworks.com/cleve/2020/10/23/gil-strang-and-the-cr-matrix-factorization/
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com