Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
SetterAssumptions
Guides
SetterAssumptions Package
Symbols
AssumeInteger
Assume
AssumePositive
AssumeReal
CurrentAssumptions
FrameAndStoreMatrix
FrameAndStore
RemoveAllAssumptions
RemoveAssumptions
Restart
KevinSetter`SetterAssumptions`
F
r
a
m
e
A
n
d
S
t
o
r
e
F
r
a
m
e
A
n
d
S
t
o
r
e
[
v
a
r
,
v
a
l
]
r
e
t
u
r
n
s
a
f
r
a
m
e
d
i
m
a
g
e
o
f
v
a
l
a
n
d
a
l
s
o
s
t
o
r
e
s
v
a
l
i
n
t
o
t
h
e
v
a
r
i
a
b
l
e
v
a
r
Examples
(
1
)
Basic Examples
(
1
)
To store the result of a calculation in a variable and then display the result as a framed image, use:
I
n
[
1
]
:
=
F
r
a
m
e
A
n
d
S
t
o
r
e
[
a
n
s
,
2
+
3
+
4
]
O
u
t
[
1
]
=
a
n
s
=
9
Since the answer has been stored to a variable, it can be referenced in further calculations:
I
n
[
2
]
:
=
a
n
s
+
7
O
u
t
[
2
]
=
1
6
For more complicated calculations, it is helpful to break into multiple lines:
I
n
[
3
]
:
=
γ
m
2
c
\
/
/
.
m
Q
u
a
n
t
i
t
y
[
"
P
r
o
t
o
n
M
a
s
s
"
]
,
c
Q
u
a
n
t
i
t
y
[
"
S
p
e
e
d
O
f
L
i
g
h
t
"
]
,
γ
1
1
-
2
(
v
/
c
)
,
v
0
.
8
c
/
/
U
n
i
t
C
o
n
v
e
r
t
;
F
r
a
m
e
A
n
d
S
t
o
r
e
[
e
n
e
r
g
y
,
%
]
O
u
t
[
3
]
=
e
n
e
r
g
y
=
2
.
5
0
5
4
6
×
-
1
0
1
0
k
g
2
m
/
2
s
To store display and store multiple values at once, assign answers to a list of variables:
I
n
[
4
]
:
=
γ
m
2
c
\
/
/
.
m
Q
u
a
n
t
i
t
y
[
"
P
r
o
t
o
n
M
a
s
s
"
]
,
c
Q
u
a
n
t
i
t
y
[
"
S
p
e
e
d
O
f
L
i
g
h
t
"
]
,
γ
1
1
-
2
(
v
/
c
)
,
v
0
.
8
c
/
/
U
n
i
t
C
o
n
v
e
r
t
;
γ
m
v
\
/
/
.
m
Q
u
a
n
t
i
t
y
[
"
P
r
o
t
o
n
M
a
s
s
"
]
,
c
Q
u
a
n
t
i
t
y
[
"
S
p
e
e
d
O
f
L
i
g
h
t
"
]
,
γ
1
1
-
2
(
v
/
c
)
,
v
0
.
8
c
/
/
U
n
i
t
C
o
n
v
e
r
t
;
F
r
a
m
e
A
n
d
S
t
o
r
e
[
{
e
n
e
r
g
y
,
m
o
m
e
n
t
u
m
}
,
{
%
%
,
%
}
]
O
u
t
[
4
]
=
{
e
n
e
r
g
y
,
m
o
m
e
n
t
u
m
}
=
2
.
5
0
5
4
6
×
-
1
0
1
0
k
g
2
m
/
2
s
,
6
.
6
8
5
8
6
×
-
1
9
1
0
k
g
m
/
s
To frame the result of a calculation and make it into a function for future use, include underscores in the arguments:
I
n
[
5
]
:
=
2
A
-
b
2
m
2
x
2
m
+
2
b
2
t
2
ℏ
m
2
m
+
2
b
2
t
2
ℏ
/
.
A
1
/
4
b
1
/
4
π
;
F
r
a
m
e
A
n
d
S
t
o
r
e
[
P
[
x
_
,
t
_
]
,
%
]
O
u
t
[
5
]
=
P
[
x
_
,
t
_
]
=
b
-
b
2
m
2
x
2
m
+
2
b
2
t
2
ℏ
m
π
2
m
+
2
b
2
t
2
ℏ
S
e
e
A
l
s
o
F
r
a
m
e
A
n
d
S
t
o
r
e
M
a
t
r
i
x
R
e
l
a
t
e
d
G
u
i
d
e
s
▪
S
e
t
t
e
r
A
s
s
u
m
p
t
i
o
n
s
P
a
c
k
a
g
e
"
"