Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

SetterAssumptions

Guides

  • SetterAssumptions Package

Symbols

  • AssumeInteger
  • Assume
  • AssumePositive
  • AssumeReal
  • CurrentAssumptions
  • FrameAndStoreMatrix
  • FrameAndStore
  • RemoveAllAssumptions
  • RemoveAssumptions
  • Restart
KevinSetter`SetterAssumptions`
AssumeInteger
​
AssumeInteger
[v]
adds
Element
[
v
,
Integer
] to the list of current assumptions. Here,
v
is one or more variables.
​
Examples  
(1)
Basic Examples  
(1)
By default, Mathematica assumes that variables are complex-valued. Accordingly, the following expression does not simplify
In[1]:=
Cos[πn]+Sin[πm]//Simplify
Out[1]=
Cos[nπ]+Sin[mπ]
Assume that variables are integers:
In[2]:=
AssumeInteger
[m,n]
Out[2]=
m∈&&n∈
The expression now simplifies:
In[3]:=
Cos[πn]+Sin[πm]//Simplify
Out[3]=
n
(-1)
SeeAlso
Assume
▪
AssumePositive
▪
AssumeReal
▪
RemoveAssumptions
▪
RemoveAllAssumptions
▪
CurrentAssumptions
RelatedGuides
▪
SetterAssumptions Package
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com