Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

CGAlgebra

Symbols

  • Arco
  • Centere
  • circle3D
  • Dual
  • GeometricProduct
  • GFactor
  • Grade
  • GradeQ
  • I5
  • InnerProduct
  • Involution
  • Magnitude
  • MultiplicationTable
  • MultivectorInverse
  • OuterProduct
  • Radio
  • Reversion
  • Rotation
Paclet`
Rotation
​
Rotation[x,a,b,θ]
rotates the vector x by an angle θ (in radians), along the plane defined by a and b. The sense of the rotation is from a to b. If no theta is given, the default value is the angle between a and b.
​
Details and Options

Examples  
(3)
Basic Examples  
(1)
Rotate a multi-vector:
In[1]:=
a=a1e[1]+a2e[2];​​b=b3e[3];
In[2]:=
Rotation
[e[1]+e[2]+e[∞],a,b]
Out[2]=
-
a1a2
2
a1
+
2
a2
+
2
a2
2
a1
+
2
a2
e[1]+
2
a1
2
a1
+
2
a2
-
a1a2
2
a1
+
2
a2
e[2]+
3
a1
(
2
a1
+
2
a2
)
2
b3
2
(
2
a1
+
2
a2
)
b3
+
2
a1
a2
(
2
a1
+
2
a2
)
2
b3
2
(
2
a1
+
2
a2
)
b3
+
a1
2
a2
(
2
a1
+
2
a2
)
2
b3
2
(
2
a1
+
2
a2
)
b3
+
3
a2
(
2
a1
+
2
a2
)
2
b3
2
(
2
a1
+
2
a2
)
b3
e[3]+e[∞]
Options  
(1)

Properties & Relations  
(1)

SeeAlso
Reversion
▪
Involution
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com