Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

CGAlgebra

Symbols

  • Arco
  • Centere
  • circle3D
  • Dual
  • GeometricProduct
  • GFactor
  • Grade
  • GradeQ
  • I5
  • InnerProduct
  • Involution
  • Magnitude
  • MultiplicationTable
  • MultivectorInverse
  • OuterProduct
  • Radio
  • Reversion
  • Rotation
Jlaragonvera`CGAlgebra`
OuterProduct
​
OuterProduct[m1,m2,...]
returns the Outer Product of multivectors m1,m2,...
​
Details and Options

Examples  
(14)
Basic Examples  
(2)
Calculate the outer product of two multi-vectors in
4,1

:
In[1]:=
A=e[1,2,3]+ae[∞,3,2];
In[2]:=
B=ae[1,2]+be[1];
In[3]:=
OuterProduct
[A,B]
Out[3]=
abe[1,2,3,∞]
​
In[1]:=
A=e[∞]+e[1,2];
In[2]:=
B=e[0,1]+e[∞];
In[3]:=
OuterProduct
[A,B]
Out[3]=
-e[1]+e[0,1,∞]+e[1,2,∞]
Scope  
(2)

Generalizations & Extensions  
(1)

Applications  
(5)

Properties & Relations  
(3)

Possible Issues  
(1)

SeeAlso
InnerProduct
▪
GeometricProduct
▪
Magnitude
TechNotes
▪
If a, b, and c are vectors, and α and β are scalars, the exterior product has the following properties:​Antisymmetry: a∧b=−b∧a. In particular, a∧a=0.Distributivity (or linearity): a∧(αb+βc)=α(a∧b)+β(a∧c).Associativity: a∧(b∧c)=(a∧b)∧c, which we write as Scalar operation: α∧β=αβ and α∧a=a∧α=αa.
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com