Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
Phi4tools
Guides
Phi4tools
Tech Notes
Feynman Diagram Evaluation
Perturbative Series Generation
Symbols
BubbleSubdiagram
CountLoops
DeriveAndWriteExplicit
DrawGraph
ExternalMomentum
InformationDiagram
IntegrandDiagram
Momentum
MomVars
NComponents
NickelIndex
Propagator
SquareSubdiagram
SunsetSubdiagram
SymmetryFactorDiagram
TadSunsetSubdiagram
TadTriangleBubblesSubdiagram
TriangleSubdiagram
ValueDiagram
VisualizeDiagram
WriteExplicit
XCubicRatio
GSberveglieri`Phi4tools`
E
x
t
e
r
n
a
l
M
o
m
e
n
t
u
m
E
x
t
e
r
n
a
l
M
o
m
e
n
t
u
m
[
i
]
r
e
p
r
e
s
e
n
t
s
t
h
e
i
-
t
h
e
x
t
e
r
n
a
l
m
o
m
e
n
t
u
m
v
a
r
i
a
b
l
e
.
E
x
t
e
r
n
a
l
M
o
m
e
n
t
u
m
[
i
,
s
]
r
e
p
r
e
s
e
n
t
s
t
h
e
s
c
o
m
p
o
n
e
n
t
o
f
t
h
e
i
-
t
h
e
x
t
e
r
n
a
l
m
o
m
e
n
t
u
m
v
a
r
i
a
b
l
e
.
D
e
t
a
i
l
s
a
n
d
O
p
t
i
o
n
s
Examples
(
1
)
Basic Examples
(
1
)
I
n
[
1
]
:
=
N
e
e
d
s
[
"
G
S
b
e
r
v
e
g
l
i
e
r
i
`
P
h
i
4
t
o
o
l
s
`
"
]
Let's look at the
r
d
3
diagram for
(
2
)
Γ
for the
4
ϕ
theory with
v
3
=2 cubic vertices and
v
4
=1 quartic vertex, let's visualize it and print its integrand:
I
n
[
2
]
:
=
V
i
s
u
a
l
i
z
e
D
i
a
g
r
a
m
[
2
,
2
,
1
,
3
]
,
I
n
t
e
g
r
a
n
d
D
i
a
g
r
a
m
[
2
,
2
,
1
,
3
,
"
E
x
t
e
r
n
a
l
M
o
m
e
n
t
u
m
"
T
r
u
e
]
O
u
t
[
2
]
=
,
[
[
1
]
]
[
[
1
]
-
[
2
]
]
[
[
2
]
]
[
-
[
1
]
+
[
2
]
]
Here
[
1
]
is the
E
x
t
e
r
n
a
l
M
o
m
e
n
t
u
m
and
[
1
]
and
[
2
]
are the internal momenta of this two-loop diagram.
With the function
W
r
i
t
e
E
x
p
l
i
c
i
t
we can write explicitly the integrand in
d
=
3
in terms of the three dimensional components in spherical coordinates.
I
n
[
3
]
:
=
W
r
i
t
e
E
x
p
l
i
c
i
t
[
[
[
1
]
]
[
[
1
]
-
[
2
]
]
[
[
2
]
]
[
-
[
1
]
+
[
2
]
]
]
O
u
t
[
3
]
=
1
1
+
2
[
1
]
ρ
1
+
2
[
2
]
ρ
1
+
2
[
1
]
ρ
-
2
C
o
s
[
[
2
]
θ
]
[
1
]
ρ
[
2
]
ρ
+
2
[
2
]
ρ
1
+
2
[
1
]
ρ
+
2
[
2
]
ρ
-
2
[
1
]
ρ
[
2
]
ρ
C
o
s
[
[
1
]
θ
]
C
o
s
[
[
2
]
θ
]
+
C
o
s
[
1
]
ϕ
S
i
n
[
[
1
]
θ
]
S
i
n
[
[
2
]
θ
]
With the function
D
e
r
i
v
e
A
n
d
W
r
i
t
e
E
x
p
l
i
c
i
t
we derive the integrand with respect to the external momentum squared
2
[
1
]
and write the result at
[
1
]
=
0
in
d
=
3
in terms of the three-dimensional components in spherical coordinates.
I
n
[
4
]
:
=
S
i
m
p
l
i
f
y
@
D
e
r
i
v
e
A
n
d
W
r
i
t
e
E
x
p
l
i
c
i
t
[
[
[
1
]
]
[
[
1
]
-
[
2
]
]
[
[
2
]
]
[
-
[
1
]
+
[
2
]
]
]
O
u
t
[
4
]
=
-
3
+
2
[
2
]
ρ
3
1
+
2
[
1
]
ρ
4
1
+
2
[
2
]
ρ
1
+
2
[
1
]
ρ
-
2
C
o
s
[
[
2
]
θ
]
[
1
]
ρ
[
2
]
ρ
+
2
[
2
]
ρ
With the analytics substitutions in place we have
I
n
[
5
]
:
=
V
i
s
u
a
l
i
z
e
D
i
a
g
r
a
m
[
2
,
2
,
1
,
3
,
"
S
u
b
s
t
i
t
u
t
i
o
n
s
"
"
A
n
a
l
y
t
i
c
s
"
]
,
I
n
t
e
g
r
a
n
d
D
i
a
g
r
a
m
[
2
,
2
,
1
,
3
,
"
E
x
t
e
r
n
a
l
M
o
m
e
n
t
u
m
"
T
r
u
e
,
"
S
u
b
s
t
i
t
u
t
i
o
n
s
"
"
A
n
a
l
y
t
i
c
s
"
]
O
u
t
[
5
]
=
,
ℬ
[
[
1
]
]
[
[
1
]
-
[
1
]
]
[
[
1
]
]
I
n
[
6
]
:
=
S
i
m
p
l
i
f
y
@
D
e
r
i
v
e
A
n
d
W
r
i
t
e
E
x
p
l
i
c
i
t
[
ℬ
[
[
1
]
]
[
[
1
]
-
[
1
]
]
[
[
1
]
]
]
O
u
t
[
6
]
=
A
r
c
T
a
n
[
1
]
ρ
2
-
3
+
2
[
1
]
ρ
1
2
π
[
1
]
ρ
4
1
+
2
[
1
]
ρ
S
e
e
A
l
s
o
M
o
m
e
n
t
u
m
▪
P
r
o
p
a
g
a
t
o
r
▪
I
n
t
e
g
r
a
n
d
D
i
a
g
r
a
m
▪
W
r
i
t
e
E
x
p
l
i
c
i
t
▪
D
e
r
i
v
e
A
n
d
W
r
i
t
e
E
x
p
l
i
c
i
t
T
e
c
h
N
o
t
e
s
▪
F
e
y
n
m
a
n
D
i
a
g
r
a
m
E
v
a
l
u
a
t
i
o
n
R
e
l
a
t
e
d
G
u
i
d
e
s
▪
P
h
i
4
t
o
o
l
s
"
"