Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

Phi4tools

Guides

  • Phi4tools

Tech Notes

  • Feynman Diagram Evaluation
  • Perturbative Series Generation

Symbols

  • BubbleSubdiagram
  • CountLoops
  • DeriveAndWriteExplicit
  • DrawGraph
  • ExternalMomentum
  • InformationDiagram
  • IntegrandDiagram
  • Momentum
  • MomVars
  • NComponents
  • NickelIndex
  • Propagator
  • SquareSubdiagram
  • SunsetSubdiagram
  • SymmetryFactorDiagram
  • TadSunsetSubdiagram
  • TadTriangleBubblesSubdiagram
  • TriangleSubdiagram
  • ValueDiagram
  • VisualizeDiagram
  • WriteExplicit
  • XCubicRatio
GSberveglieri`Phi4tools`
XCubicRatio
​
​
XCubicRatio
[]
represents the ratio between the cubic and
O(N)
-symmetric coupling constants.
​
Details and Options

Examples  
(1)
Basic Examples  
(1)
In[1]:=
Needs["GSberveglieri`Phi4tools`"]
Let's look at the
nd
2
diagram for
(2)
Γ
for the
4
ϕ
theory with
v4
=3 quartic vertices, let's visualize it and print its symmetry factor for the theory with O(N) model broken to cubic symmetry:
In[2]:=

VisualizeDiagram
[2,0,3,1],
SymmetryFactorDiagram
[2,0,3,1,"Tensor""Cubic"]
Out[2]=

,
4
9
+
4Ν
9
+
2
Ν
9
+2Χ+ΝΧ+
8
2
Χ
3
+
Ν
2
Χ
3
+
3
Χ

Using the function
InformationDiagram
with the option "Tensor"->"Cubic" is possible to get both these information at the same time, for example
In[3]:=
info4031=
InformationDiagram
[4,0,3,1,"Tensor""Cubic"]
Out[3]=
External Legs
4
Cubic Vertices
0
Quartic Vertices
3
List Number
1
Nickel Index
ee11|22|ee|
Symmetry Factor
{
…
4
}
Diagram
Value
1
In[4]:=
info4031["Symmetry Factor"]
Out[4]=
4
9
+
2Ν
9
+
2
Ν
27
+
4Χ
3
+
ΝΧ
3
+
2
Χ
4/27
4/27
4Χ
3
+2
2
Χ
+
3
Χ
The four coefficients are those for the three channels of the 4-pt functions of the O(N) model and for the tensorial structure of the anisotropic term, respectively.
The actual contribution for a given Feynman diagram is given by the product between the value of the diagram and symmetry factor that can be printed with
ValueDiagram
and
SymmetryFactorDiagram
, respectively. For example at the order
4
λ
for
(2)
Γ
for the cubic model we have
In[5]:=
FullSimplify
ValueDiagram
[2,0,4].
SymmetryFactorDiagram
[2,0,4,"Tensor""Cubic"]
Out[5]=
1
243
(2594.54092727736820106
±
1.9×
-16
10
)+Ν((2119.89727713855838649
±
1.0×
-16
10
)+Ν((461.771717162301630254
±
2.1×
-17
10
)+(25.22915520618224363714606744
±
3.0×
-25
10
)Ν))+((15567.2455636642092064
±
1.1×
-15
10
)+Ν((4935.76088099924571576
±
2.5×
-16
10
)+(302.749862474186923645752809
±
4.×
-24
10
)Ν))Χ+(28245.5600949787509341
±
2.0×
-15
10
)+Ν(2983.78747494424006137
±
8.×
-17
10
)-72Log
4
3
Ν
2
Χ
+(20397.0763247779858410
±
1.4×
-15
10
)+54
2
π
-8Log
4
3
Ν
3
Χ
+(5201.43907678441046145
±
3.4×
-16
10
)
4
Χ
SeeAlso
NComponents
 
▪
SymmetryFactorDiagram
 
▪
ValueDiagram
 
▪
InformationDiagram
TechNotes
▪
Perturbative Series Generation
RelatedGuides
▪
Phi4tools
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com