Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

ArXivExplore

Guides

  • ArXivArticles
  • ArXivAuthor
  • ArXivCitations
  • ArXivClassify
  • ArXivCluster
  • ArXivDataset
  • ArXivExplain
  • ArXivFeatures
  • ArXivLogos
  • ArXivTeX
  • ArXivTop
  • ArXivTrend

Symbols

  • ArXivAbstracts
  • ArXivArticles
  • ArXivAuthorArticles
  • ArXivAuthorGraph
  • ArXivAuthorRegister
  • ArXivAuthors
  • ArXivCategoriesLegend
  • ArXivCategories
  • ArXivCategoriesPrimary
  • ArXivCitationsAbstracts
  • ArXivCitationsAuthor
  • ArXivCitationsGraph
  • ArXivCitations
  • ArXivCitationsTitles
  • ArXivCitationsTotal
  • ArXivClassifyAuthorsNet
  • ArXivClassifyAuthorsTrainTest
  • ArXivClassifyCategoriesNet
  • ArXivClassifyCategoriesTrainTest
  • ArXivClusterAuthorsGraph
  • ArXivClusterCategoriesGraph
  • ArXivClusterLegend
  • ArXivDatasetAggregate
  • ArXivDatasetLookup
  • ArXivDataset
  • ArXivDatasetSubset
  • ArXivDates
  • ArXivExplainAuthor
  • ArXivExplainConcept
  • ArXivFeaturesAuthorsNearest
  • ArXivFeaturesAuthorsNet
  • ArXivFeaturesAuthorsSet
  • ArXivFeaturesCategoriesNearest
  • ArXivFeaturesCategoriesNet
  • ArXivFeaturesCategoriesSet
  • ArXivIDs
  • ArXivLogosAbstracts
  • ArXivLogosTitles
  • ArXivPlotAbstracts
  • ArXivPlot
  • ArXivPlotTitles
  • ArXivTeXDocument
  • ArXivTeXFormulae
  • ArXivTeXIntroduction
  • ArXivTeXPreamble
  • ArXivTeXSections
  • ArXivTitles
  • ArXivTopAbstracts
  • ArXivTopAuthors
  • ArXivTopCategories
  • ArXivTopTitles
  • ArXivTrendAbstracts
  • ArXivTrendArticles
  • ArXivTrendTitles
  • ArXivVersions
  • ArXivVocabularyAbstracts
  • ArXivVocabularyIntroductions
  • ArXivVocabularyTitles
DanieleGregori`ArXivExplore`
ArXivAbstracts
​
ArXivAbstracts
[id]
returns all the abstracts of a given article id;
​
​
ArXivAbstracts
[
All
,cat]
returns all abstracts of a given category 'cat', associated with their
id
.
​
Details and Options

Examples  
(3)
Basic Examples  
(1)
In[1]:=
ArXivAbstracts
["1908.08030"]//Text
Out[1]=
To analyse pure ${\cal N}=2$ $SU(2)$ gauge theory in the Nekrasov-Shatashvili(NS) limit (or deformed Seiberg-Witten (SW)), we use the Ordinary DifferentialEquation/Integrable Model (ODE/IM) correspondence, and in particular its(broken) discrete symmetry in its extended version with {\it two} singularirregular points. Actually, this symmetry appears to be 'manifestation' of thespontaneously broken $\mathbb{Z}_2$ R-symmetry of the original gauge problemand the two deformed SW cycles are simply connected to the Baxter's $T$ and $Q$functions, respectively, of the Liouville conformal field theory at theself-dual point. The liaison is realised via a second order differentialoperator which is essentially the 'quantum' version of the square of the SWdifferential. Moreover, the constraints imposed by the broken $\mathbb{Z}_2$R-symmetry acting on the moduli space (Bilal-Ferrari equations) seem to havetheir quantum counterpart in the $TQ$ and the $T$ periodicity relations, andintegrability yields also a useful Thermodynamic Bethe Ansatz (TBA) for thecycles ($Y(\theta,\pm u)$ or their square roots, $Q(\theta,\pm u)$). A latere,two efficient asymptotic expansion techniques are presented. Clearly, the wholeconstruction is extendable to gauge theories with matter and/or higher rankgroups.
In[2]:=
ArXivAbstracts
[All,"hep-th"]//Short[#,4]&
Out[2]//Short=
hep-th/9108028 These lectures consisted of an elementary introduction to conform…Moody algebras and coset constructions 10. Advanced applications,105409,1
Options  
(2)

""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com