Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

ArXivExplore

Guides

  • ArXivArticles
  • ArXivAuthor
  • ArXivCitations
  • ArXivClassify
  • ArXivCluster
  • ArXivDataset
  • ArXivExplain
  • ArXivFeatures
  • ArXivLogos
  • ArXivTeX
  • ArXivTop
  • ArXivTrend

Symbols

  • ArXivAbstracts
  • ArXivArticles
  • ArXivAuthorArticles
  • ArXivAuthorGraph
  • ArXivAuthorRegister
  • ArXivAuthors
  • ArXivCategoriesLegend
  • ArXivCategories
  • ArXivCategoriesPrimary
  • ArXivCitationsAbstracts
  • ArXivCitationsAuthor
  • ArXivCitationsGraph
  • ArXivCitations
  • ArXivCitationsTitles
  • ArXivCitationsTotal
  • ArXivClassifyAuthorsNet
  • ArXivClassifyAuthorsTrainTest
  • ArXivClassifyCategoriesNet
  • ArXivClassifyCategoriesTrainTest
  • ArXivClusterAuthorsGraph
  • ArXivClusterCategoriesGraph
  • ArXivClusterLegend
  • ArXivDatasetAggregate
  • ArXivDatasetLookup
  • ArXivDataset
  • ArXivDatasetSubset
  • ArXivDates
  • ArXivExplainAuthor
  • ArXivExplainConcept
  • ArXivFeaturesAuthorsNearest
  • ArXivFeaturesAuthorsNet
  • ArXivFeaturesAuthorsSet
  • ArXivFeaturesCategoriesNearest
  • ArXivFeaturesCategoriesNet
  • ArXivFeaturesCategoriesSet
  • ArXivIDs
  • ArXivLogosAbstracts
  • ArXivLogosTitles
  • ArXivPlotAbstracts
  • ArXivPlot
  • ArXivPlotTitles
  • ArXivTeXDocument
  • ArXivTeXFormulae
  • ArXivTeXIntroduction
  • ArXivTeXPreamble
  • ArXivTeXSections
  • ArXivTitles
  • ArXivTopAbstracts
  • ArXivTopAuthors
  • ArXivTopCategories
  • ArXivTopTitles
  • ArXivTrendAbstracts
  • ArXivTrendArticles
  • ArXivTrendTitles
  • ArXivVersions
  • ArXivVocabularyAbstracts
  • ArXivVocabularyIntroductions
  • ArXivVocabularyTitles
DanieleGregori`ArXivExplore`
ArXivDataset
​
ArXivDataset[All] returns the whole ArXiv dataset cleaned and ordered by date of first version;
​
​
ArXivDataset[cat] returns only the dataset for a specified primary category 'cat';
​
​
ArXivDataset[[cat,All}] returns the dataset of all articles sharing (as primary or as cross-list) the category 'cat'.
​
Details and Options

Examples  
(4)
Basic Examples  
(1)
In[1]:=
Dimensions
ArXivDataset
[All]
Out[1]=
{2530752,14}
In[2]:=
ByteCount
ArXivDataset
[All]
Out[2]=
11176235568
In[3]:=
RandomChoice
ArXivDataset
[All]//TableForm
Out[3]//TableForm=
id1907.09926
submitterSilvano Simula
authorsS. Romiti and S. Simula
titleExtraction of multiple exponential signals from lattice correlation functions
comments45 pages, 9 figures, 13 tables; few references added and few minor points addressed; version to appear in PRD
journal-refPhys. Rev. D 100, 054515 (2019)
doi10.1103/PhysRevD.100.054515
report-noNull
categorieshep-lat hep-ph
licensehttp://arxiv.org/licenses/nonexclusive-distrib/1.0/
abstract We present a fast and simple algorithm that allows the extraction of multipleexponential signals from the temporal dependence of correlation functionsevaluated on the lattice including the statistical fluctuations of each signaland treating properly backward signals. The basic steps of the method are theinversion of appropriate matrices and the determination of the roots of anappropriate polynomial, constructed using discretized derivatives of thecorrelation function. The method is tested strictly using fake data generatedassuming a fixed number of exponential signals included in the correlationfunction with a controlled numerical precision and within given statisticalfluctuations. All the exponential signals together with their statisticaluncertainties are determined exactly by the algorithm. The only limiting factoris the numerical rounding off. In the case of correlation functions evaluatedby large-scale QCD simulations on the lattice various sources of noise, otherthan the numerical rounding, can affect the correlation function and theyrepresent the crucial factor limiting the number of exponential signals,related to the hadronic spectral decomposition of the correlation function,that can be properly extracted. The algorithm can be applied to a large varietyof correlation functions typically encountered in QCD or QCD+QED simulations onthe lattice, including the case of exponential signals corresponding to poleswith arbitrary multiplicity and/or the case of oscillating signals. The methodis able to to detect the specific structure of the multiple exponential signalswithout any a priori assumption and it determines accurately the ground-statesignal without the need that the lattice temporal extension is large enough toallow the ground-state signal to be isolated.
versions{{versionv1,createdTue, 23 Jul 2019 14:54:56 GMT},{versionv2,createdTue, 6 Aug 2019 16:24:48 GMT},{versionv3,createdThu, 12 Sep 2019 06:09:42 GMT}}
update_date2019-10-09
authors_parsed{{Romiti,S.,},{Simula,S.,}}
Scope  
(1)

Generalizations & Extensions  
(1)

Possible Issues  
(1)

SeeAlso
ArXivDatasetAggregate
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com