Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

GroupTheoryPaclet

Guides

  • Extra Group Theory Functionality

Symbols

  • CharacteristicSubgroupQ
  • CommutatorSubgroup
  • DerivedSeries
  • DerivedSubgroup
  • FindGroupIsomorphism
  • GroupAutomorphismGroup
  • GroupCenter
  • GroupConjugacyClasses
  • GroupDirectProduct
  • GroupMinimalGeneratingSet
  • GroupQ
  • InnerAutomorphismGroup
  • IsomorphicGroupsQ
  • NormalSubgroupQ
  • OuterAutomorphismGroup
  • PerfectGroupQ
  • QuotientGroup
DanielMcDonald`GroupTheoryPaclet`
QuotientGroup
​
QuotientGroup
[
g
1
,
g
2
]
finds the quotient group
g
1
/
g
2
of a group
g
1
and its normal subgroup
g
2
.
​
Details and Options

Examples  
(2)
Basic Examples  
(1)
Find the quotient group of a group and its normal subgroup:
In[74]:=
QuotientGroup
[CyclicGroup[6],PermutationGroup[{Cycles[{}],Cycles[{{1,4},{2,5},{3,6}}]}]]
Out[74]=
PermutationGroup[{Cycles[{}],Cycles[{{1,2,3}}],Cycles[{{1,3,2}}]}]
Properties & Relations  
(1)

SeeAlso
NormalSubgroupQ
RelatedGuides
▪
Extra Group Theory Functionality
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com