Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

GroupTheoryPaclet

Guides

  • Extra Group Theory Functionality

Symbols

  • CharacteristicSubgroupQ
  • CommutatorSubgroup
  • DerivedSeries
  • DerivedSubgroup
  • FindGroupIsomorphism
  • GroupAutomorphismGroup
  • GroupCenter
  • GroupConjugacyClasses
  • GroupDirectProduct
  • GroupMinimalGeneratingSet
  • GroupQ
  • InnerAutomorphismGroup
  • IsomorphicGroupsQ
  • NormalSubgroupQ
  • OuterAutomorphismGroup
  • PerfectGroupQ
  • QuotientGroup
DanielMcDonald`GroupTheoryPaclet`
GroupDirectProduct
​
GroupDirectProduct
[
g
1
,
g
2
,…]
finds the direct product of groups
g
1
,
g
2
, ...
​
Details and Options

Examples  
(1)
Basic Examples  
(1)
▪
Compute the direct product of the cyclic and symmetric groups of degree 3:
In[1]:=
GroupDirectProduct
[CyclicGroup[3],SymmetricGroup[3]]
Out[1]=
PermutationGroup[{Cycles[{}],Cycles[{{1,2},{3,4},{5,6},{7,8},{9,10},{11,12},{13,14},{15,16},{17,18}}],Cycles[{{1,3},{2,5},{4,6},{7,9},{8,11},{10,12},{13,15},{14,17},{16,18}}],Cycles[{{1,5,4},{2,3,6},{7,11,10},{8,9,12},{13,17,16},{14,15,18}}],Cycles[{{1,4,5},{2,6,3},{7,10,11},{8,12,9},{13,16,17},{14,18,15}}],Cycles[{{1,6},{2,4},{3,5},{7,12},{8,10},{9,11},{13,18},{14,16},{15,17}}],Cycles[{{1,13,7},{2,14,8},{3,15,9},{4,16,10},{5,17,11},{6,18,12}}],Cycles[{{1,14,7,2,13,8},{3,16,9,4,15,10},{5,18,11,6,17,12}}],Cycles[{{1,15,7,3,13,9},{2,17,8,5,14,11},{4,18,10,6,16,12}}],Cycles[{{1,17,10},{2,15,12},{3,18,8},{4,13,11},{5,16,7},{6,14,9}}],Cycles[{{1,16,11},{2,18,9},{3,14,12},{4,17,7},{5,13,10},{6,15,8}}],Cycles[{{1,18,7,6,13,12},{2,16,8,4,14,10},{3,17,9,5,15,11}}],Cycles[{{1,7,13},{2,8,14},{3,9,15},{4,10,16},{5,11,17},{6,12,18}}],Cycles[{{1,8,13,2,7,14},{3,10,15,4,9,16},{5,12,17,6,11,18}}],Cycles[{{1,9,13,3,7,15},{2,11,14,5,8,17},{4,12,16,6,10,18}}],Cycles[{{1,11,16},{2,9,18},{3,12,14},{4,7,17},{5,10,13},{6,8,15}}],Cycles[{{1,10,17},{2,12,15},{3,8,18},{4,11,13},{5,7,16},{6,9,14}}],Cycles[{{1,12,13,6,7,18},{2,10,14,4,8,16},{3,11,15,5,9,17}}]}]
SeeAlso
RelatedGuides
▪
Extra Group Theory Functionality
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com