Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
QuantileRegression
Guides
Quantile regression
Symbols
NURBSBasis
QuantileEnvelope
QuantileEnvelopeRegion
QuantileRegressionFit
QuantileRegression
AntonAntonov`QuantileRegression`
Q
u
a
n
t
i
l
e
R
e
g
r
e
s
s
i
o
n
F
i
t
Q
u
a
n
t
i
l
e
R
e
g
r
e
s
s
i
o
n
F
i
t
[
d
a
t
a
,
f
u
n
s
,
v
a
r
,
p
r
o
b
s
]
f
i
n
d
s
t
h
e
r
e
g
r
e
s
s
i
o
n
q
u
a
n
t
i
l
e
s
c
o
r
r
e
s
p
o
n
d
i
n
g
t
o
t
h
e
p
r
o
b
a
b
i
l
i
t
i
e
s
p
r
o
b
s
f
o
r
a
l
i
s
t
o
f
d
a
t
a
a
s
l
i
n
e
a
r
c
o
m
b
i
n
a
t
i
o
n
s
o
f
t
h
e
f
u
n
c
t
i
o
n
s
f
u
n
s
o
f
t
h
e
v
a
r
i
a
b
l
e
v
a
r
.
D
e
t
a
i
l
s
a
n
d
O
p
t
i
o
n
s
Examples
(
1
)
Basic Examples
(
1
)
Make a random signal:
I
n
[
1
]
:
=
S
e
e
d
R
a
n
d
o
m
[
2
3
]
;
n
=
2
0
0
;
r
a
n
d
D
a
t
a
=
T
r
a
n
s
p
o
s
e
[
{
R
a
n
g
e
[
n
]
,
R
a
n
d
o
m
R
e
a
l
[
{
0
,
1
0
0
.
}
,
n
]
}
]
;
Compute Quantile Regression with
5
knots for the probabilities
0
.
2
5
and
0
.
7
5
:
I
n
[
2
]
:
=
q
F
u
n
c
s
=
Q
u
a
n
t
i
l
e
R
e
g
r
e
s
s
i
o
n
F
i
t
[
r
a
n
d
D
a
t
a
,
T
a
b
l
e
[
x
^
i
,
{
i
,
0
,
5
}
]
,
x
,
{
0
.
2
5
,
0
.
7
5
}
]
;
Here are the formulas of the obtained regression quantiles:
I
n
[
3
]
:
=
S
i
m
p
l
i
f
y
/
@
q
F
u
n
c
s
O
u
t
[
3
]
=
{
1
7
.
3
4
5
5
+
0
.
0
0
0
1
7
7
3
8
6
x
+
0
.
0
0
0
6
4
6
8
5
4
2
x
+
3
.
6
5
3
×
-
7
1
0
3
x
+
1
.
9
4
5
3
9
×
-
1
0
1
0
4
x
+
1
.
0
1
5
1
6
×
-
1
2
1
0
5
x
,
8
1
.
0
2
1
+
0
.
0
0
9
3
3
3
9
7
x
+
4
.
5
7
9
9
3
×
-
6
1
0
2
x
+
2
.
9
9
7
1
×
-
8
1
0
3
x
+
3
.
5
1
9
8
3
×
-
1
0
1
0
4
x
+
6
.
5
7
9
1
4
×
-
1
1
1
0
5
x
}
Here is a plot of the original data and the obtained regression quantiles:
I
n
[
4
]
:
=
L
i
s
t
L
i
n
e
P
l
o
t
[
{
r
a
n
d
D
a
t
a
,
q
F
u
n
c
s
〚
1
〛
/
.
x
r
a
n
d
D
a
t
a
〚
A
l
l
,
1
〛
,
q
F
u
n
c
s
〚
2
〛
/
.
x
r
a
n
d
D
a
t
a
〚
A
l
l
,
1
〛
}
,
P
l
o
t
L
e
g
e
n
d
s
{
"
d
a
t
a
"
,
0
.
2
5
,
0
.
7
5
}
,
P
l
o
t
S
t
y
l
e
{
T
h
i
n
,
T
h
i
c
k
,
T
h
i
c
k
}
,
P
l
o
t
T
h
e
m
e
"
D
e
t
a
i
l
e
d
"
]
O
u
t
[
4
]
=
d
a
t
a
0
.
2
5
0
.
7
5
S
e
e
A
l
s
o
Q
u
a
n
t
i
l
e
R
e
g
r
e
s
s
i
o
n
▪
N
U
R
B
S
B
a
s
i
s
▪
F
i
t
R
e
l
a
t
e
d
G
u
i
d
e
s
▪
Q
u
a
n
t
i
l
e
r
e
g
r
e
s
s
i
o
n
"
"