Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

QuantileRegression

Guides

  • Quantile regression

Symbols

  • NURBSBasis
  • QuantileEnvelope
  • QuantileEnvelopeRegion
  • QuantileRegressionFit
  • QuantileRegression
AntonAntonov`QuantileRegression`
QuantileRegressionFit
​
QuantileRegressionFit
[data,funs,var,probs]
finds the regression quantiles corresponding to the probabilities
probs
for a list of
data
as linear combinations of the functions
funs
of the variable
var
.
​
Details and Options

Examples  
(1)
Basic Examples  
(1)
Make a random signal:
In[1]:=
SeedRandom[23];​​n=200;​​randData=Transpose[{Range[n],RandomReal[{0,100.},n]}];
Compute Quantile Regression with
5
knots for the probabilities
0.25
and
0.75
:
In[2]:=
qFuncs=
QuantileRegressionFit
[randData,Table[x^i,{i,0,5}],x,{0.25,0.75}];
Here are the formulas of the obtained regression quantiles:
In[3]:=
Simplify/@qFuncs
Out[3]=
{17.3455+0.000177386x+0.000646854
2
x
+3.653×
-7
10
3
x
+1.94539×
-10
10
4
x
+1.01516×
-12
10
5
x
,81.021+0.00933397x+4.57993×
-6
10
2
x
+2.9971×
-8
10
3
x
+3.51983×
-10
10
4
x
+6.57914×
-11
10
5
x
}
Here is a plot of the original data and the obtained regression quantiles:
In[4]:=
ListLinePlot[{randData,qFuncs〚1〛/.xrandData〚All,1〛,qFuncs〚2〛/.xrandData〚All,1〛},PlotLegends{"data",0.25,0.75},PlotStyle{Thin,Thick,Thick},PlotTheme"Detailed"]
Out[4]=
data
0.25
0.75
SeeAlso
QuantileRegression
 
▪
NURBSBasis
 
▪
Fit
RelatedGuides
▪
Quantile regression
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com