Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
QuantileRegression
Guides
Quantile regression
Tech Notes
Quantile regression 3D examples
Quantile regression over weather time series
Unit tests
Symbols
NURBSBasis
QuantileEnvelope
QuantileEnvelopeRegion
QuantileRegressionFit
QuantileRegression
AntonAntonov`QuantileRegression`
Q
u
a
n
t
i
l
e
R
e
g
r
e
s
s
i
o
n
Q
u
a
n
t
i
l
e
R
e
g
r
e
s
s
i
o
n
[
d
a
t
a
,
k
s
_
L
i
s
t
,
p
r
o
b
s
]
f
i
n
d
s
t
h
e
r
e
g
r
e
s
s
i
o
n
q
u
a
n
t
i
l
e
s
c
o
r
r
e
s
p
o
n
d
i
n
g
t
o
t
h
e
p
r
o
b
a
b
i
l
i
t
i
e
s
p
r
o
b
s
f
o
r
a
l
i
s
t
o
f
d
a
t
a
a
s
l
i
n
e
a
r
c
o
m
b
i
n
a
t
i
o
n
s
o
f
s
p
l
i
n
e
s
g
e
n
e
r
a
t
e
d
o
v
e
r
t
h
e
k
n
o
t
s
k
s
.
W
i
t
h
t
h
e
s
i
g
n
a
t
u
r
e
Q
u
a
n
t
i
l
e
R
e
g
r
e
s
s
i
o
n
[
d
a
t
a
,
n
_
I
n
t
e
g
e
r
,
p
r
o
b
s
]
n
e
q
u
a
l
l
y
s
p
a
c
e
d
k
n
o
t
s
a
r
e
g
e
n
e
r
a
t
e
d
.
T
h
e
o
r
d
e
r
o
f
t
h
e
s
p
l
i
n
e
s
i
s
s
p
e
c
i
f
i
e
d
w
i
t
h
t
h
e
o
p
t
i
o
n
I
n
t
e
r
p
o
l
a
t
i
o
n
O
r
d
e
r
.
D
e
t
a
i
l
s
a
n
d
O
p
t
i
o
n
s
Examples
(
1
9
)
Basic Examples
(
1
)
Make a random signal:
I
n
[
1
]
:
=
S
e
e
d
R
a
n
d
o
m
[
2
3
]
;
n
=
2
0
0
;
r
a
n
d
D
a
t
a
=
T
r
a
n
s
p
o
s
e
[
{
R
a
n
g
e
[
n
]
,
R
a
n
d
o
m
R
e
a
l
[
{
0
,
1
0
0
.
}
,
n
]
}
]
;
Compute Quantile Regression with
5
knots for the probabilities
0
.
2
5
and
0
.
7
5
:
I
n
[
2
]
:
=
q
F
u
n
c
s
=
Q
u
a
n
t
i
l
e
R
e
g
r
e
s
s
i
o
n
[
r
a
n
d
D
a
t
a
,
5
,
{
0
.
2
5
,
0
.
7
5
}
]
;
Here are the formulas of the obtained regression quantiles:
I
n
[
3
]
:
=
S
i
m
p
l
i
f
y
/
@
T
h
r
o
u
g
h
[
q
F
u
n
c
s
[
x
]
]
O
u
t
[
3
]
=
0
.
x
>
2
0
0
|
|
x
<
1
3
8
1
8
.
7
8
-
7
0
.
5
9
9
9
x
+
0
.
4
3
3
1
6
3
2
x
-
0
.
0
0
0
8
7
5
7
7
2
3
x
8
0
1
5
<
x
≤
2
0
0
4
0
9
9
.
0
5
-
7
5
.
8
4
8
4
x
+
0
.
4
6
5
9
2
5
2
x
-
0
.
0
0
0
9
4
3
9
4
2
3
x
5
x
8
0
1
8
4
.
2
6
8
3
-
0
.
5
0
1
6
3
7
x
-
0
.
0
0
5
7
6
2
3
2
2
x
+
0
.
0
0
0
0
4
1
2
7
3
2
3
x
4
0
3
5
<
x
≤
6
0
2
5
-
6
2
.
9
0
7
8
+
4
.
9
7
6
3
8
x
-
0
.
0
7
3
7
2
7
8
2
x
+
0
.
0
0
0
3
2
2
3
5
5
3
x
2
0
4
5
≤
x
≤
4
0
3
5
3
4
.
9
0
1
7
-
2
.
2
1
5
4
9
x
+
0
.
1
0
2
5
4
4
2
x
-
0
.
0
0
1
1
1
7
7
7
3
x
1
≤
x
<
2
0
4
5
1
1
0
.
6
8
1
-
1
.
1
5
9
7
6
x
-
0
.
0
0
0
2
9
6
2
1
6
2
x
+
0
.
0
0
0
0
2
6
1
4
0
1
3
x
T
r
u
e
,
0
.
x
>
2
0
0
|
|
x
<
1
5
0
6
.
1
8
7
-
1
4
.
1
3
7
1
x
+
0
.
1
4
2
8
1
2
x
-
0
.
0
0
0
4
5
6
4
6
4
3
x
4
0
3
5
≤
x
<
6
0
2
5
9
8
3
.
6
9
-
1
5
.
2
4
3
9
x
+
0
.
0
8
4
6
4
1
8
2
x
-
0
.
0
0
0
1
5
5
2
6
4
3
x
8
0
1
5
<
x
≤
2
0
0
5
9
.
6
7
5
6
+
1
.
1
9
5
1
9
x
-
0
.
0
1
5
8
6
6
8
2
x
-
0
.
0
0
0
0
5
7
9
9
6
7
3
x
1
≤
x
<
2
0
4
5
-
7
5
9
.
5
2
9
+
1
7
.
4
0
0
7
x
-
0
.
1
1
9
1
3
2
2
x
+
0
.
0
0
0
2
6
8
7
3
5
3
x
6
0
2
5
≤
x
≤
8
0
1
5
2
4
.
2
2
2
4
+
3
.
8
0
2
0
4
x
-
0
.
0
7
9
7
6
0
1
2
x
+
0
.
0
0
0
4
6
4
0
0
8
3
x
T
r
u
e
Here is a plot of the original data and the obtained regression quantiles:
I
n
[
4
]
:
=
L
i
s
t
L
i
n
e
P
l
o
t
[
{
r
a
n
d
D
a
t
a
,
q
F
u
n
c
s
〚
1
〛
/
@
r
a
n
d
D
a
t
a
〚
A
l
l
,
1
〛
,
q
F
u
n
c
s
〚
2
〛
/
@
r
a
n
d
D
a
t
a
〚
A
l
l
,
1
〛
}
,
P
l
o
t
L
e
g
e
n
d
s
{
"
d
a
t
a
"
,
0
.
2
5
`
,
0
.
7
5
`
}
,
P
l
o
t
S
t
y
l
e
{
T
h
i
n
,
T
h
i
c
k
,
T
h
i
c
k
}
,
P
l
o
t
T
h
e
m
e
"
D
e
t
a
i
l
e
d
"
]
O
u
t
[
4
]
=
d
a
t
a
0
.
2
5
0
.
7
5
Find the fraction of the data points that are under the second regression quantile:
I
n
[
5
]
:
=
L
e
n
g
t
h
[
S
e
l
e
c
t
[
r
a
n
d
D
a
t
a
,
#
〚
2
〛
<
q
F
u
n
c
s
〚
2
〛
[
#
〚
1
〛
]
&
]
]
/
L
e
n
g
t
h
[
r
a
n
d
D
a
t
a
]
/
/
N
O
u
t
[
5
]
=
0
.
7
5
The obtained fraction is close to the second probability,
0
.
7
5
, given to
Q
u
a
n
t
i
l
e
R
e
g
r
e
s
s
i
o
n
.
S
c
o
p
e
(
4
)
O
p
t
i
o
n
s
(
2
)
A
p
p
l
i
c
a
t
i
o
n
s
(
4
)
P
r
o
p
e
r
t
i
e
s
&
R
e
l
a
t
i
o
n
s
(
2
)
P
o
s
s
i
b
l
e
I
s
s
u
e
s
(
5
)
N
e
a
t
E
x
a
m
p
l
e
s
(
1
)
S
e
e
A
l
s
o
Q
u
a
n
t
i
l
e
R
e
g
r
e
s
s
i
o
n
F
i
t
▪
F
i
t
▪
B
S
p
l
i
n
e
B
a
s
i
s
R
e
l
a
t
e
d
G
u
i
d
e
s
▪
Q
u
a
n
t
i
l
e
r
e
g
r
e
s
s
i
o
n
"
"