Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
QuantileRegression
Guides
Quantile regression
Symbols
NURBSBasis
QuantileEnvelope
QuantileEnvelopeRegion
QuantileRegressionFit
QuantileRegression
AntonAntonov`QuantileRegression`
Q
u
a
n
t
i
l
e
R
e
g
r
e
s
s
i
o
n
Q
u
a
n
t
i
l
e
R
e
g
r
e
s
s
i
o
n
[
d
a
t
a
,
k
s
_
L
i
s
t
,
p
r
o
b
s
]
f
i
n
d
s
t
h
e
r
e
g
r
e
s
s
i
o
n
q
u
a
n
t
i
l
e
s
c
o
r
r
e
s
p
o
n
d
i
n
g
t
o
t
h
e
p
r
o
b
a
b
i
l
i
t
i
e
s
p
r
o
b
s
f
o
r
a
l
i
s
t
o
f
d
a
t
a
a
s
l
i
n
e
a
r
c
o
m
b
i
n
a
t
i
o
n
s
o
f
s
p
l
i
n
e
s
g
e
n
e
r
a
t
e
d
o
v
e
r
t
h
e
k
n
o
t
s
k
s
.
W
i
t
h
t
h
e
s
i
g
n
a
t
u
r
e
Q
u
a
n
t
i
l
e
R
e
g
r
e
s
s
i
o
n
[
d
a
t
a
,
n
_
I
n
t
e
g
e
r
,
p
r
o
b
s
]
n
e
q
u
a
l
l
y
s
p
a
c
e
d
k
n
o
t
s
a
r
e
g
e
n
e
r
a
t
e
d
.
T
h
e
o
r
d
e
r
o
f
t
h
e
s
p
l
i
n
e
s
i
s
s
p
e
c
i
f
i
e
d
w
i
t
h
t
h
e
o
p
t
i
o
n
I
n
t
e
r
p
o
l
a
t
i
o
n
O
r
d
e
r
.
D
e
t
a
i
l
s
a
n
d
O
p
t
i
o
n
s
Examples
(
1
8
)
Basic Examples
(
1
)
Make a random signal:
I
n
[
1
]
:
=
S
e
e
d
R
a
n
d
o
m
[
2
3
]
;
n
=
2
0
0
;
r
a
n
d
D
a
t
a
=
T
r
a
n
s
p
o
s
e
[
{
R
a
n
g
e
[
n
]
,
R
a
n
d
o
m
R
e
a
l
[
{
0
,
1
0
0
.
}
,
n
]
}
]
;
Compute Quantile Regression with
5
knots for the probabilities
0
.
2
5
and
0
.
7
5
:
I
n
[
2
]
:
=
q
F
u
n
c
s
=
Q
u
a
n
t
i
l
e
R
e
g
r
e
s
s
i
o
n
[
r
a
n
d
D
a
t
a
,
5
,
{
0
.
2
5
,
0
.
7
5
}
]
;
Here are the formulas of the obtained regression quantiles:
I
n
[
3
]
:
=
S
i
m
p
l
i
f
y
/
@
T
h
r
o
u
g
h
[
q
F
u
n
c
s
[
x
]
]
O
u
t
[
3
]
=
0
.
x
>
2
0
0
|
|
x
<
1
3
8
1
8
.
7
8
-
7
0
.
5
9
9
9
x
+
0
.
4
3
3
1
6
3
2
x
-
0
.
0
0
0
8
7
5
7
7
2
3
x
8
0
1
5
<
x
≤
2
0
0
4
0
9
9
.
0
5
-
7
5
.
8
4
8
4
x
+
0
.
4
6
5
9
2
5
2
x
-
0
.
0
0
0
9
4
3
9
4
2
3
x
5
x
8
0
1
8
4
.
2
6
8
3
-
0
.
5
0
1
6
3
7
x
-
0
.
0
0
5
7
6
2
3
2
2
x
+
0
.
0
0
0
0
4
1
2
7
3
2
3
x
4
0
3
5
<
x
≤
6
0
2
5
-
6
2
.
9
0
7
8
+
4
.
9
7
6
3
8
x
-
0
.
0
7
3
7
2
7
8
2
x
+
0
.
0
0
0
3
2
2
3
5
5
3
x
2
0
4
5
≤
x
≤
4
0
3
5
3
4
.
9
0
1
7
-
2
.
2
1
5
4
9
x
+
0
.
1
0
2
5
4
4
2
x
-
0
.
0
0
1
1
1
7
7
7
3
x
1
≤
x
<
2
0
4
5
1
1
0
.
6
8
1
-
1
.
1
5
9
7
6
x
-
0
.
0
0
0
2
9
6
2
1
6
2
x
+
0
.
0
0
0
0
2
6
1
4
0
1
3
x
T
r
u
e
,
0
.
x
>
2
0
0
|
|
x
<
1
5
0
6
.
1
8
7
-
1
4
.
1
3
7
1
x
+
0
.
1
4
2
8
1
2
x
-
0
.
0
0
0
4
5
6
4
6
4
3
x
4
0
3
5
≤
x
<
6
0
2
5
9
8
3
.
6
9
-
1
5
.
2
4
3
9
x
+
0
.
0
8
4
6
4
1
8
2
x
-
0
.
0
0
0
1
5
5
2
6
4
3
x
8
0
1
5
<
x
≤
2
0
0
5
9
.
6
7
5
6
+
1
.
1
9
5
1
9
x
-
0
.
0
1
5
8
6
6
8
2
x
-
0
.
0
0
0
0
5
7
9
9
6
7
3
x
1
≤
x
<
2
0
4
5
-
7
5
9
.
5
2
9
+
1
7
.
4
0
0
7
x
-
0
.
1
1
9
1
3
2
2
x
+
0
.
0
0
0
2
6
8
7
3
5
3
x
6
0
2
5
≤
x
≤
8
0
1
5
2
4
.
2
2
2
4
+
3
.
8
0
2
0
4
x
-
0
.
0
7
9
7
6
0
1
2
x
+
0
.
0
0
0
4
6
4
0
0
8
3
x
T
r
u
e
Here is a plot of the original data and the obtained regression quantiles:
I
n
[
4
]
:
=
L
i
s
t
L
i
n
e
P
l
o
t
[
{
r
a
n
d
D
a
t
a
,
q
F
u
n
c
s
〚
1
〛
/
@
r
a
n
d
D
a
t
a
〚
A
l
l
,
1
〛
,
q
F
u
n
c
s
〚
2
〛
/
@
r
a
n
d
D
a
t
a
〚
A
l
l
,
1
〛
}
,
P
l
o
t
L
e
g
e
n
d
s
{
"
d
a
t
a
"
,
0
.
2
5
`
,
0
.
7
5
`
}
,
P
l
o
t
S
t
y
l
e
{
T
h
i
n
,
T
h
i
c
k
,
T
h
i
c
k
}
,
P
l
o
t
T
h
e
m
e
"
D
e
t
a
i
l
e
d
"
]
O
u
t
[
4
]
=
d
a
t
a
0
.
2
5
0
.
7
5
Find the fraction of the data points that are under the second regression quantile:
I
n
[
5
]
:
=
L
e
n
g
t
h
[
S
e
l
e
c
t
[
r
a
n
d
D
a
t
a
,
#
〚
2
〛
<
q
F
u
n
c
s
〚
2
〛
[
#
〚
1
〛
]
&
]
]
/
L
e
n
g
t
h
[
r
a
n
d
D
a
t
a
]
/
/
N
O
u
t
[
5
]
=
0
.
7
5
The obtained fraction is close to the second probability,
0
.
7
5
, given to
Q
u
a
n
t
i
l
e
R
e
g
r
e
s
s
i
o
n
.
S
c
o
p
e
(
3
)
O
p
t
i
o
n
s
(
2
)
A
p
p
l
i
c
a
t
i
o
n
s
(
4
)
P
r
o
p
e
r
t
i
e
s
&
R
e
l
a
t
i
o
n
s
(
2
)
P
o
s
s
i
b
l
e
I
s
s
u
e
s
(
5
)
N
e
a
t
E
x
a
m
p
l
e
s
(
1
)
S
e
e
A
l
s
o
Q
u
a
n
t
i
l
e
R
e
g
r
e
s
s
i
o
n
F
i
t
▪
F
i
t
▪
B
S
p
l
i
n
e
B
a
s
i
s
R
e
l
a
t
e
d
G
u
i
d
e
s
▪
Q
u
a
n
t
i
l
e
r
e
g
r
e
s
s
i
o
n
"
"