Wolfram Computation Meets Knowledge

Fresnel Equations for P-Polarized Light

The Fresnel equations calculate the reflection and transmission coefficients for light incident on an interface between media of differing refractive indices.

The transmission coefficient for p\[Hyphen]polarized incident light equals 1 minus the reflection coefficient. The reflection coefficient depends on the angle of incidence and the indices of refraction of the two media.

Formula

{QuantityVariable[Subscript["R", "p"], "Unitless"] == (Cos[QuantityVariable[Subscript["θ", "1"], "Angle"]]*QuantityVariable[Subscript["n", "2"], "Unitless"] - QuantityVariable[Subscript["n", "1"], "Unitless"]*Sqrt[1 - (QuantityVariable[Subscript["n", "1"], "Unitless"]^2*Sin[QuantityVariable[Subscript["θ", "1"], "Angle"]]^2)/QuantityVariable[Subscript["n", "2"], "Unitless"]^2])^2/(Cos[QuantityVariable[Subscript["θ", "1"], "Angle"]]*QuantityVariable[Subscript["n", "2"], "Unitless"] + QuantityVariable[Subscript["n", "1"], "Unitless"]*Sqrt[1 - (QuantityVariable[Subscript["n", "1"], "Unitless"]^2*Sin[QuantityVariable[Subscript["θ", "1"], "Angle"]]^2)/QuantityVariable[Subscript["n", "2"], "Unitless"]^2])^2, QuantityVariable[Subscript["T", "p"], "Unitless"] == 1 - QuantityVariable[Subscript["R", "p"], "Unitless"]}

Forms

Examples

Get the resource:

In[1]:=
ResourceObject["Fresnel Equations for P-Polarized Light"]
Out[1]=

Get the formula:

In[2]:=
FormulaData[ResourceObject["Fresnel Equations for P-Polarized Light"]]
Out[2]=

Use some values:

In[3]:=
FormulaData[
 ResourceObject[
  "Fresnel Equations for P-Polarized Light"], {QuantityVariable[
\!\(\*SubscriptBox[\("n"\), \("2"\)]\),"Unitless"] -> 2, 
  QuantityVariable[
\!\(\*SubscriptBox[\("n"\), \("1"\)]\),"Unitless"] -> 1}]
Out[3]=

Source Metadata

Publisher Information